推荐使用StyleTTS:自然多元的文本转语音合成新典范
项目地址:https://gitcode.com/gh_mirrors/st/StyleTTS
在人工智能领域,文本转语音(Text-to-Speech, TTS)技术正逐步走向成熟,为我们带来了高质量的语音合成体验。然而,如何赋予合成语音自然的韵律变化、多样化的说话风格和丰富的情感色彩,依然是一个挑战。StyleTTS应运而生,它是一个基于风格的并行TTS生成模型,能够从参考语音片段中生成富有自然韵律且多样化的语音。
论文链接:https://arxiv.org/abs/2107.10394 音频样本:https://styletts.github.io/
1. 项目介绍
StyleTTS创新地引入了Transferable Monotonic Aligner(TMA)和时长不变的数据增强策略,解决了平行TTS系统中音长与语音同步的问题,显著提升了语音自然度和发言人相似性的主观评价。通过自我监督学习的方法,StyleTTS无需明确标注说话风格和情绪类别,即可借鉴任意参考语音的语调和情感进行合成,实现了真正的自然与多样性。
2. 项目技术分析
StyleTTS的核心包括两部分:
- Transferable Monotonic Aligner (TMA):这是一种新型的对齐器,能有效找到最佳的单向对齐方式,增强了语音合成的自然感。
- 数据增强策略:通过时长不变的数据增强,模型在保持原始特征的同时增加了语音的多样性,提高了泛化能力。
3. 应用场景
- 多媒体制作:为视频配音,实现个性化的语音风格。
- 虚拟助手:让AI助手模仿特定人物的声音,提升交互体验。
- 有声读物:自动转换文本到多种风格的语音,满足不同听众需求。
- 教育应用:创建各种情绪或口音的语音教程,增加学习趣味性。
4. 项目特点
- 高效训练:提供清晰的训练脚本,支持一键式训练第一阶段和第二阶段模型。
- 多样性合成:只需参考语音,就能合成相同韵律和情感的语音,无需预设标签。
- 预处理工具:提供预训练的文本对齐器和音高提取器,方便快速上手。
- 开放源代码:完全开源,便于开发者进一步研究和定制。
要使用StyleTTS,请确保Python环境为3.7或更高版本,然后按照项目README中的步骤下载并安装依赖项、数据集以及模型。
让我们一起探索StyleTTS带来的无限可能,为文本转语音领域开辟新的道路!