TinyNAS:高效神经架构搜索工具

TinyNAS:高效神经架构搜索工具

lightweight-neural-architecture-search 项目地址: https://gitcode.com/gh_mirrors/li/lightweight-neural-architecture-search

项目介绍

TinyNAS 是由阿里巴巴达摩院数据分析与智能实验室的 TinyML 团队开发的一套训练无需的神经架构搜索(NAS)方法集合。该工具箱旨在帮助研究人员和开发者在 CPU 设备上,在 30 分钟内设计出符合不同预算需求的神经网络架构。TinyNAS 集成了多种先进的 NAS 技术,包括基于熵的神经架构评估(DeepMAD)、基于梯度的神经架构评估(Zen-NAS)、联合量化与架构搜索(Mixed-Precision Quantization Search)等,并广泛应用于目标检测、动作识别等领域。

项目技术分析

TinyNAS 的核心技术包括:

  1. 训练无需的神经架构评估:通过熵(DeepMAD)和梯度(Zen-NAS)等方法,无需训练即可评估神经网络架构的性能。
  2. 联合量化与架构搜索:在搜索过程中同时优化网络架构和量化精度,以实现更高的效率和性能。
  3. 多任务支持:支持分类、检测、量化等多种任务的神经架构搜索,满足不同应用场景的需求。

项目及技术应用场景

TinyNAS 适用于以下场景:

  1. 资源受限的设备:如嵌入式设备、移动设备等,需要在有限的计算资源下实现高性能的神经网络。
  2. 快速原型设计:研究人员和开发者可以在短时间内设计出高效的神经网络架构,加速模型开发和验证过程。
  3. 多任务应用:适用于需要同时处理分类、检测、动作识别等多种任务的应用场景。

项目特点

TinyNAS 具有以下显著特点:

  1. 高效性:无需训练即可评估和设计神经网络架构,大大缩短了设计周期。
  2. 灵活性:支持多种搜索策略和预算约束,可以根据具体需求定制网络架构。
  3. 多任务支持:集成了多种任务的搜索模块,满足不同应用场景的需求。
  4. 易于使用:提供了详细的安装和使用指南,用户可以快速上手并进行定制化开发。

结语

TinyNAS 是一个功能强大且易于使用的神经架构搜索工具,适用于各种资源受限和多任务应用场景。无论你是研究人员还是开发者,TinyNAS 都能帮助你在短时间内设计出高效的神经网络架构。立即尝试 TinyNAS,体验其带来的高效和便捷吧!


参考文献

@inproceedings{cvpr2023deepmad,
	title = {DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network},
	author = {Xuan Shen and Yaohua Wang and Ming Lin and Yilun Huang and Hao Tang and Xiuyu Sun and Yanzhi Wang},
	booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
	year = {2023},
}

lightweight-neural-architecture-search 项目地址: https://gitcode.com/gh_mirrors/li/lightweight-neural-architecture-search

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪亚钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值