FATE联邦学习框架中的逻辑回归基准测试配置解析

FATE联邦学习框架中的逻辑回归基准测试配置解析

FATE An Industrial Grade Federated Learning Framework FATE 项目地址: https://gitcode.com/gh_mirrors/fa/FATE

概述

在联邦学习框架FATE中,逻辑回归(Logistic Regression)是一个常用的基础算法,用于处理分类问题。本文将深入分析一个针对乳腺癌数据集(breast)的联邦逻辑回归基准测试配置文件,帮助读者理解如何配置联邦学习任务参数。

配置文件结构解析

该配置文件定义了联邦逻辑回归模型训练的各项参数,主要包含以下几个关键部分:

1. 数据配置

data_guest: "breast_hetero_guest"
data_host: "breast_hetero_host"
idx: "id"
label_name: "y"
  • data_guestdata_host分别指定了参与联邦学习的双方(guest和host)所使用的数据集名称
  • idx定义了数据集中用于对齐的ID列名
  • label_name指定了标签列的名称,这里是"y"

2. 模型训练参数

epochs: 20
batch_size: null
  • epochs设置为20,表示训练将进行20轮完整的数据迭代
  • batch_size为null表示使用全批量训练(Full Batch),即每次迭代使用全部数据

3. 模型初始化参数

init_param:
  fit_intercept: True
  method: "random_uniform"
  random_state: 42
  • fit_intercept为True表示模型将学习截距项(bias)
  • method指定参数初始化方法为均匀随机分布
  • random_state设置随机种子为42,确保实验可复现

4. 学习率调度器

learning_rate_scheduler:
  method: "constant"
  scheduler_params:
    factor: 1.0
    total_iters: 100
  • 使用恒定学习率策略(constant)
  • factor为1.0表示学习率不进行缩放
  • total_iters设置为100(虽然epochs只有20,这里可能是为其他用途预留)

5. 优化器配置

optimizer:
  method: "rmsprop"
  penalty: "L2"
  optimizer_params:
    lr: 0.05
  alpha: 0.1
  • 使用RMSprop优化算法
  • 采用L2正则化(penalty: "L2")
  • 初始学习率(lr)设置为0.05
  • 正则化系数(alpha)为0.1

6. 其他训练配置

early_stop: "diff"
task_cores: 4
timeout: 3600
  • early_stop策略设置为"diff",即根据损失函数变化决定是否提前停止
  • task_cores限制任务使用的CPU核心数为4
  • timeout设置任务超时时间为3600秒(1小时)

技术要点解析

  1. 联邦逻辑回归特点

    • 该配置用于横向联邦逻辑回归,数据特征分布在不同的参与方
    • 通过ID列对齐不同参与方的数据样本
  2. 优化器选择

    • RMSprop是自适应学习率优化算法,适合非平稳目标函数
    • 相比SGD,RMSprop能自动调整学习率,减少手动调参工作量
  3. 正则化应用

    • L2正则化(岭回归)可防止模型过拟合
    • alpha=0.1控制正则化强度,需要根据具体问题调整
  4. 训练控制

    • 全批量训练适合中小规模数据集
    • 对于大数据集,可设置batch_size使用小批量训练

实际应用建议

  1. 对于不同的数据集,建议调整以下参数:

    • 学习率(通常尝试0.01-0.1范围)
    • 正则化系数(根据特征维度调整)
    • 训练轮数(观察验证集性能决定)
  2. 可以尝试不同的优化器:

    • SGD:简单但需要仔细调参
    • Adam:自适应学习率,通常表现良好
  3. 学习率调度策略:

    • 对于复杂问题,可尝试"linear"或"step"等动态调整策略

通过理解这些配置参数,用户可以更好地在FATE框架中实现和调优联邦逻辑回归模型,解决实际业务中的分类问题。

FATE An Industrial Grade Federated Learning Framework FATE 项目地址: https://gitcode.com/gh_mirrors/fa/FATE

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/72147cbc453d 在当今信息化时代,高校社团管理的高效性与便捷性至关重要。基于 Spring Boot 开发的社团管理系统,致力于打造一个功能全面、操作便捷且安全可靠的平台,以满足高校社团的日常运营需求。本文将深入剖析该系统的架构设计、核心功能以及实现原理。 Spring Boot 以其轻量级和快速开发的特性,成为众多企业级应用的首选框架。本社团管理系统采用 Spring Boot 搭建,并遵循 RESTful API 设计原则,构建出一个松耦合、模块化的架构。借助 Spring Boot 的自动配置功能,项目初始化工作得以大幅简化,使开发者能够更加专注于业务逻辑的开发。 权限管理是系统安全的关键环节。本系统引入多级权限控制机制,确保不同角色(如管理员、普通成员等)能够访问其对应的系统功能。通常会借助 Spring Security 或 Apache Shiro 等安全框架,通过角色、权限与资源的映射关系,实现对用户操作的精细化管理。 为了提升用户体验和提高信息传递效率,系统集成了短信接口。在用户注册、密码找回、活动报名等关键操作环节,通过短信验证码进行验证。这需要与第三方短信服务提供商(如阿里云、腾讯云等)进行对接,利用其 SDK 实现短信的发送与接收功能。 会员管理:涵盖会员注册、登录、信息修改及权限分配等功能,方便社团成员进行自我管理。 活动管理:支持活动的创建、审批、报名以及评价等全流程管理,便于社团组织各类活动。 场地管理:实现场地的预定、审批和使用记录管理,确保资源的有效分配。 会议管理:提供会议安排、通知以及签到等功能,提升会议组织效率。 社团管理:包括社团的创建、修改、解散以及社团成员管理等功能。 消息通知:能够实时推送系统消息,保障信息的及时传达。 文件下发:支持文件的上传与下载,方便
资源下载链接为: https://pan.quark.cn/s/79a048d3db20 格陵兰多媒体教学系统V7.0(专业版)-7.0.016是一款专为局域网有线网络环境设计的电子教室机房教学软件,致力于提升教学效率与互动性,助力教师高效管理与掌控课堂。该专业版系统具备丰富功能,满足现代教育需求。 其核心功能之一是广播教学。教师可将自身电脑屏幕内容实时同步至所有学生电脑,全班同学能同步查看相同教学内容,无论是演示课件、播放视频还是操作软件,都能实现统一教学节奏,从而提升教学效率。 个性化小组教学功能则允许教师针对不同学生或小组开展针对性教学。教师可选择部分学生进行单独讲解或组织分组讨论,既能兼顾每个学生的学习进度,又能激发学生间的合作与竞争,增强学习的趣味性和深度。 此外,教学测验功能便于教师进行课堂评估。教师可设计并发布在线测验,实时收集学生答题情况,快速掌握学生对课程内容的理解程度,及时调整教学策略。这种即时反馈机制有助于优化教学过程,保障学生学习效果。 在远程集控管理方面,该系统为教师提供了强大工具。教师可远程操控学生电脑,进行屏幕监控,防止学生课堂分心或进行无关活动,还能统一管理学生电脑设置,如禁用特定程序或网站,维护课堂秩序。 系统中还包含Searcher.exe,这可能是一款搜索工具,方便教师和学生快速查找课堂所需教学资源。而Readme.txt通常记录了软件的安装指南、更新日志或使用注意事项,是初次使用者获取软件信息的重要途径。 格陵兰多媒体教学系统V7.0(专业版)融合了现代信息技术与教育实践,提供了一站式教学解决方案。它使教师能够更灵活、高效地开展教学活动,为学生创造更优质的学习体验。凭借其多元化功能,该系统不仅提高了教学效率,还促进了师生互动交流,契合信息化时代教育需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪亚钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值