FATE联邦学习框架中的逻辑回归基准测试配置解析
FATE An Industrial Grade Federated Learning Framework 项目地址: https://gitcode.com/gh_mirrors/fa/FATE
概述
在联邦学习框架FATE中,逻辑回归(Logistic Regression)是一个常用的基础算法,用于处理分类问题。本文将深入分析一个针对乳腺癌数据集(breast)的联邦逻辑回归基准测试配置文件,帮助读者理解如何配置联邦学习任务参数。
配置文件结构解析
该配置文件定义了联邦逻辑回归模型训练的各项参数,主要包含以下几个关键部分:
1. 数据配置
data_guest: "breast_hetero_guest"
data_host: "breast_hetero_host"
idx: "id"
label_name: "y"
data_guest
和data_host
分别指定了参与联邦学习的双方(guest和host)所使用的数据集名称idx
定义了数据集中用于对齐的ID列名label_name
指定了标签列的名称,这里是"y"
2. 模型训练参数
epochs: 20
batch_size: null
epochs
设置为20,表示训练将进行20轮完整的数据迭代batch_size
为null表示使用全批量训练(Full Batch),即每次迭代使用全部数据
3. 模型初始化参数
init_param:
fit_intercept: True
method: "random_uniform"
random_state: 42
fit_intercept
为True表示模型将学习截距项(bias)method
指定参数初始化方法为均匀随机分布random_state
设置随机种子为42,确保实验可复现
4. 学习率调度器
learning_rate_scheduler:
method: "constant"
scheduler_params:
factor: 1.0
total_iters: 100
- 使用恒定学习率策略(
constant
) factor
为1.0表示学习率不进行缩放total_iters
设置为100(虽然epochs只有20,这里可能是为其他用途预留)
5. 优化器配置
optimizer:
method: "rmsprop"
penalty: "L2"
optimizer_params:
lr: 0.05
alpha: 0.1
- 使用RMSprop优化算法
- 采用L2正则化(
penalty: "L2"
) - 初始学习率(
lr
)设置为0.05 - 正则化系数(
alpha
)为0.1
6. 其他训练配置
early_stop: "diff"
task_cores: 4
timeout: 3600
early_stop
策略设置为"diff",即根据损失函数变化决定是否提前停止task_cores
限制任务使用的CPU核心数为4timeout
设置任务超时时间为3600秒(1小时)
技术要点解析
-
联邦逻辑回归特点:
- 该配置用于横向联邦逻辑回归,数据特征分布在不同的参与方
- 通过ID列对齐不同参与方的数据样本
-
优化器选择:
- RMSprop是自适应学习率优化算法,适合非平稳目标函数
- 相比SGD,RMSprop能自动调整学习率,减少手动调参工作量
-
正则化应用:
- L2正则化(岭回归)可防止模型过拟合
- alpha=0.1控制正则化强度,需要根据具体问题调整
-
训练控制:
- 全批量训练适合中小规模数据集
- 对于大数据集,可设置batch_size使用小批量训练
实际应用建议
-
对于不同的数据集,建议调整以下参数:
- 学习率(通常尝试0.01-0.1范围)
- 正则化系数(根据特征维度调整)
- 训练轮数(观察验证集性能决定)
-
可以尝试不同的优化器:
- SGD:简单但需要仔细调参
- Adam:自适应学习率,通常表现良好
-
学习率调度策略:
- 对于复杂问题,可尝试"linear"或"step"等动态调整策略
通过理解这些配置参数,用户可以更好地在FATE框架中实现和调优联邦逻辑回归模型,解决实际业务中的分类问题。
FATE An Industrial Grade Federated Learning Framework 项目地址: https://gitcode.com/gh_mirrors/fa/FATE
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考