推荐开源项目:CityDreamer——无限边界3D城市生成模型
去发现同类优质开源项目:https://gitcode.com/
在计算机图形学和人工智能领域,我们见证了无数创新技术的诞生。今天,我们要向您推荐一个令人惊叹的开源项目——CityDreamer,这是一个能够生成无限边界3D城市的组合式生成模型。由Haozhe Xie、Zhaoxi Chen、Fangzhou Hong 和 Ziwei Liu等人共同研发,来自南洋理工大学S-Lab的研究团队为我们带来了这个革命性的工具。
项目介绍
CityDreamer的目标是构建一个可以自动生成逼真、复杂且无边界的3D城市景观的系统。基于先进的深度学习技术,该项目提供了一种全新的方式来设计和可视化城市规划。不仅如此,它还包含了两个新颖的数据集(OSM和GoogleEarth)以及预先训练好的模型,方便用户直接进行实验和应用。
技术分析
CityDreamer采用了三个关键组件:
- Unbounded Layout Generator:负责创建城市布局,包括道路网络和区域划分。
- Background Stuff Generator:为城市背景填充如公园、湖泊和其他环境元素。
- Building Instance Generator:生成具体的建筑实例,包括形状、纹理和外观细节。
通过这些组件的协同工作,CityDreamer能够在有限的计算资源下生成超大规模的城市场景,同时保持细节丰富和视觉一致性。
应用场景
CityDreamer的应用范围广泛:
- 城市规划与设计:设计师可以快速生成多个设计方案,进行对比和优化。
- 游戏开发:提供广阔的游戏环境,增强玩家沉浸感。
- 电影与动画制作:自动构建复杂的3D场景,提高制作效率。
- 虚拟现实:构建大型虚拟世界,供用户探索。
- 数据分析:研究城市发展模式,预测未来城市形态。
项目特点
- 无限边界:生成的3D城市不受物理空间限制,可扩展至任意大小。
- 组合性:模型基于模块化设计,易于添加新元素或修改现有结构。
- 实时交互:提供迭代式演示,用户可通过Web界面实时调整城市布局。
- 易用性:提供了命令行接口,支持自定义参数以适应不同硬件配置。
- 数据驱动:基于真实世界的OSM和GoogleEarth数据集,生成结果更接近实际。
获取并使用CityDreamer
项目代码和预训练模型已在GitHub上公开,只需按照官方提供的安装指南,您就可以在本地环境中运行。此外,预处理数据集和演示视频也在不断更新中,确保了项目的持续可用性和最新性。
让我们一起探索这个充满无限可能的城市梦想世界,体验生成式AI带来的创新魅力!
项目链接:https://github.com/hzxie/city-dreamer 引用论文:CityDreamer: Compositional Generative Model of Unbounded 3D Cities
观看亮点视频:https://youtu.be/te4zinLTYz0
去发现同类优质开源项目:https://gitcode.com/