RL-Plotter 使用教程
1. 项目目录结构及介绍
RL-Plotter 的目录结构设计简洁明了,主要包含以下几个部分:
-
rl-plotter
: 项目主代码库logger.py
: 主要的日志记录器,用于收集训练数据。plotter.py
: 数据可视化模块,负责绘制学习曲线。
-
tests
: 单元测试目录,用于验证代码功能。 -
examples
: 示例代码目录,展示了如何在实际项目中集成 RL-Plotter。 -
setup.py
: Python 包安装脚本,用于安装 RL-Plotter。 -
requirements.txt
: 依赖包列表,列出项目运行所需的第三方库。 -
README.md
,README_zh.md
: 项目说明文档,分别提供英文和中文的介绍。 -
.gitignore
: Git 忽略规则,定义哪些文件不需要纳入版本控制。
2. 项目的启动文件介绍
由于 RL-Plotter 是一个日志记录和可视化的库,没有明确的“启动文件”。其核心是通过导入 rl_plotter.logger.Logger
类来集成到你的强化学习代码中。例如:
from rl_plotter.logger import Logger
# 初始化 Logger
logger = Logger(exp_name="实验名称", env_name="环境名称", seed=42)
# 在每次训练迭代后更新日志
logger.update(score=[score_1, score_2, ...], total_steps=total_step)
另外,rl_plotter.plotter
中的函数可以在训练完成后用来绘制学习曲线,例如:
# 在终端执行以下命令,根据 log 文件夹中的数据绘制图形
rl_plotter --save --show
或者,为了达到类似 OpenAI-SpinningUp 的绘图效果,可以使用:
rl_plotter_spinup --save --show
3. 项目的配置文件介绍
RL-Plotter 并未提供特定的配置文件,它通过传递参数给 Logger
对象和绘图命令来进行设置。例如,在初始化 Logger
时,你可以指定实验名 exp_name
、环境名 env_name
和随机种子 seed
。而在命令行绘图时,--save
参数保存图表至本地,--show
参数则会显示图像。
如果你需要自定义配置,可以通过创建自定义日志记录器或在命令行使用不同的参数组合来实现。在某些情况下,如需跟踪额外变量,可以在 Logger
中使用 new_custom_logger
方法创建新的日志记录器。
希望这篇简短的教程能帮助你更好地理解和使用 RL-Plotter。在实际应用中,参照 examples
目录下的示例代码是个不错的起点。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考