Mural视觉故事创作工具指南

Mural视觉故事创作工具指南

Mural Mural is a tool for visual storytelling. It’s a program that helps you sequence your visual story, and then generates everything needed for that story to be displayed on most modern web browsers and served from any web server. 项目地址: https://gitcode.com/gh_mirrors/mu/Mural

项目介绍

Mural是一款专为视觉叙事设计的工具,它帮助您编排视觉故事,并自动生成所有必要文件,以便您的故事能在大多数现代网络浏览器上展示并由任何web服务器提供服务。利用Mural,您可以在上传到网络前预览故事外观,测试各元素,按需调整。该程序采用故事板的比喻来布局故事的不同部分,允许您轻松重新排序构成故事的各个项,无需编码知识即可操作。对于开发者来说,Mural生成的标准Web代码提供了进一步定制的空间。本项目遵循GNU Affero General Public License (AGPL-3.0)许可协议。

项目快速启动

要快速启动Mural项目,确保您已安装Node.js和Yarn(或npm),然后按照以下步骤操作:

  1. 克隆项目

    git clone https://github.com/GetMural/Mural.git
    
  2. 安装依赖: 进入项目目录并安装所有必要的依赖。

    cd Mural
    yarn install 或 npm install
    
  3. 运行项目: 启动Electron应用程序及与其配套的React开发模式服务器。

    yarn start
    

    此命令将构建Electron应用并在开发模式下运行React应用。

应用案例和最佳实践

Mural被广泛用于数字新闻媒体,创作沉浸式的长篇故事,结合图像、音频、视频和文字,形成富有吸引力的视觉叙述。最佳实践包括充分利用其故事板功能,设计流畅的滚动体验(scrollytelling),以及在不熟悉代码的情况下也能便捷地调整元素顺序和样式。对于开发者,深入理解生成的HTML、CSS和JavaScript结构,可以进行高级定制,比如集成额外的交互逻辑或优化性能。

典型生态项目

虽然Mural作为一个独立项目具有强大的功能性,但在生态系统层面,它鼓励与前端技术栈的整合,如React、Vue等。尽管没有直接列出典型生态项目,但开发者社区可能会围绕Mural创建插件或模板,增强其在特定场景下的应用。例如,通过创建适应特定视觉风格的可重用组件,或利用Mural导出的数据与其他多媒体平台集成,实现更广泛的创作和分享流程。


以上即是基于Mural项目的简明指导。通过遵循这些步骤和建议,您能够迅速开始利用Mural的强大视觉叙事能力。请注意,实际操作时需关注项目最新的更新和文档,以获取最准确的指导信息。

Mural Mural is a tool for visual storytelling. It’s a program that helps you sequence your visual story, and then generates everything needed for that story to be displayed on most modern web browsers and served from any web server. 项目地址: https://gitcode.com/gh_mirrors/mu/Mural

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳旖岭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值