IDS-ML:基于机器学习的入侵检测系统
项目地址:https://gitcode.com/gh_mirrors/in/Intrusion-Detection-System-Using-Machine-Learning
项目介绍
IDS-ML 是一个开源项目,专注于使用机器学习技术开发入侵检测系统(IDS)。该项目由 Western-OC2-Lab 实验室开发,旨在为各种入侵检测和异常检测应用提供通用的模型。项目中包含了三个已发表的论文,分别介绍了基于树结构的智能入侵检测系统、多层混合入侵检测系统以及基于决策的集成框架入侵检测系统。这些系统不仅适用于自动驾驶车辆(AVs)的控制区域网络(CAN),还可以应用于一般的物联网(IoV)环境。
项目技术分析
IDS-ML 项目采用了多种机器学习算法来构建入侵检测系统,包括:
- 树结构算法:如决策树(DT)、随机森林(RF)、极端梯度提升(XGBoost)、LightGBM 和 CatBoost 等。
- 无监督学习算法:如 k-means 聚类。
- 集成学习算法:如 stacking 和 LCCDE(Leader Class and Confidence Decision Ensemble)。
- 超参数优化技术:如贝叶斯优化(Bayesian Optimization),包括高斯过程(BO-GP)和树结构 Parzen 估计器(BO-TPE)。
这些算法和技术共同构成了一个强大的入侵检测系统,能够高效地识别各种网络攻击。
项目及技术应用场景
IDS-ML 项目适用于以下场景:
- 智能交通系统(ITS):特别是在自动驾驶车辆和物联网车辆中,用于检测网络攻击,如拒绝服务攻击、欺骗攻击和嗅探攻击。
- 一般网络环境:适用于任何需要入侵检测和异常检测的应用场景,如企业网络、数据中心等。
项目特点
IDS-ML 项目具有以下特点:
- 多层次检测:通过多层混合的入侵检测系统,能够同时检测已知和未知的攻击。
- 高性能:采用先进的机器学习算法和集成技术,确保高检测率和低计算成本。
- 灵活性:支持多种数据集,包括 CICIDS2017 和 CAN-intrusion 数据集,适用于不同的应用场景。
- 开源代码:项目代码完全开源,用户可以根据需要进行定制和扩展。
总结
IDS-ML 项目提供了一个强大的工具,帮助用户在复杂的网络环境中构建高效的入侵检测系统。无论是在智能交通系统中保护自动驾驶车辆,还是在企业网络中防范网络攻击,IDS-ML 都能提供可靠的解决方案。如果你正在寻找一个灵活、高性能的入侵检测系统,不妨试试 IDS-ML,它将为你带来意想不到的惊喜。
项目链接:Intrusion-Detection-System-Using-Machine-Learning
相关资源: