IDS-ML:基于机器学习的入侵检测系统

IDS-ML:基于机器学习的入侵检测系统

项目地址:https://gitcode.com/gh_mirrors/in/Intrusion-Detection-System-Using-Machine-Learning

项目介绍

IDS-ML 是一个开源项目,专注于使用机器学习技术开发入侵检测系统(IDS)。该项目由 Western-OC2-Lab 实验室开发,旨在为各种入侵检测和异常检测应用提供通用的模型。项目中包含了三个已发表的论文,分别介绍了基于树结构的智能入侵检测系统、多层混合入侵检测系统以及基于决策的集成框架入侵检测系统。这些系统不仅适用于自动驾驶车辆(AVs)的控制区域网络(CAN),还可以应用于一般的物联网(IoV)环境。

项目技术分析

IDS-ML 项目采用了多种机器学习算法来构建入侵检测系统,包括:

  • 树结构算法:如决策树(DT)、随机森林(RF)、极端梯度提升(XGBoost)、LightGBM 和 CatBoost 等。
  • 无监督学习算法:如 k-means 聚类。
  • 集成学习算法:如 stacking 和 LCCDE(Leader Class and Confidence Decision Ensemble)。
  • 超参数优化技术:如贝叶斯优化(Bayesian Optimization),包括高斯过程(BO-GP)和树结构 Parzen 估计器(BO-TPE)。

这些算法和技术共同构成了一个强大的入侵检测系统,能够高效地识别各种网络攻击。

项目及技术应用场景

IDS-ML 项目适用于以下场景:

  • 智能交通系统(ITS):特别是在自动驾驶车辆和物联网车辆中,用于检测网络攻击,如拒绝服务攻击、欺骗攻击和嗅探攻击。
  • 一般网络环境:适用于任何需要入侵检测和异常检测的应用场景,如企业网络、数据中心等。

项目特点

IDS-ML 项目具有以下特点:

  1. 多层次检测:通过多层混合的入侵检测系统,能够同时检测已知和未知的攻击。
  2. 高性能:采用先进的机器学习算法和集成技术,确保高检测率和低计算成本。
  3. 灵活性:支持多种数据集,包括 CICIDS2017 和 CAN-intrusion 数据集,适用于不同的应用场景。
  4. 开源代码:项目代码完全开源,用户可以根据需要进行定制和扩展。

总结

IDS-ML 项目提供了一个强大的工具,帮助用户在复杂的网络环境中构建高效的入侵检测系统。无论是在智能交通系统中保护自动驾驶车辆,还是在企业网络中防范网络攻击,IDS-ML 都能提供可靠的解决方案。如果你正在寻找一个灵活、高性能的入侵检测系统,不妨试试 IDS-ML,它将为你带来意想不到的惊喜。


项目链接Intrusion-Detection-System-Using-Machine-Learning

相关资源

Intrusion-Detection-System-Using-Machine-Learning Code for IDS-ML: intrusion detection system development using machine learning algorithms (Decision tree, random forest, extra trees, XGBoost, stacking, k-means, Bayesian optimization..) Intrusion-Detection-System-Using-Machine-Learning 项目地址: https://gitcode.com/gh_mirrors/in/Intrusion-Detection-System-Using-Machine-Learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳旖岭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值