设计一个基于联邦学习的入侵检测系统,结合使用 NSL-KDD 数据集,并应用 联邦学习(Federated Learning)框架来构建模型。联邦学习是一种去中心化的机器学习方式,能够在多方数据之间进行训练,而无需将数据集中存储和共享。
项目概述
项目名称:基于联邦学习的入侵检测系统
目标:通过联邦学习对NSL-KDD数据集进行训练,检测网络入侵。
技术栈:
- 编程语言:Python 3.x
- 联邦学习框架:PySyft(基于PyTorch)
- 深度学习框架:PyTorch
- 数据集:NSL-KDD
- 模型:神经网络模型(MLP)
项目结构
federated_intrusion_detection/ ├── app.py # 联邦学习主程序 ├── dataset.py # 数据集加载与预处理 ├── model.py # 神经网络模型 ├── train.py # 联邦学习训练脚本 ├── requirements.txt # 项目依赖 ├── config.py # 配置文件 ├── results/ # 存储训练结果 ├── templates/ # Web模板文件 │ └── index.html # 训练结果展示 └── static/ # 静态文件(CSS、JS等)
1. requirements.txt
文件
Flask==2.2.5 torch==1.13.1 torchvision==0.14.1 pySyft==0.6.0 scikit-learn==1.0.2 pandas==1.4.2 numpy==1.21.4 requests==2.26.0
2. config.py
文件
配置文件,包含联邦学习的参数、数据集路径等。
import os # 配置路径 DATASET_PATH = os.path.join(os.getcwd(), 'NSL-KDD') # 联邦学习参数 BATCH_SIZE = 32 EPOCHS = 5 LEARNING_RATE = 1e-4 DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' MODEL_SAVE_PATH = os.path.join(os.getcwd(), &