基于联邦学习的入侵检测系统

设计一个基于联邦学习的入侵检测系统,结合使用 NSL-KDD 数据集,并应用 联邦学习(Federated Learning)框架来构建模型。联邦学习是一种去中心化的机器学习方式,能够在多方数据之间进行训练,而无需将数据集中存储和共享。

项目概述

项目名称:基于联邦学习的入侵检测系统

目标:通过联邦学习对NSL-KDD数据集进行训练,检测网络入侵。

技术栈

  • 编程语言:Python 3.x
  • 联邦学习框架:PySyft(基于PyTorch)
  • 深度学习框架:PyTorch
  • 数据集:NSL-KDD
  • 模型:神经网络模型(MLP)

项目结构

federated_intrusion_detection/
├── app.py                  # 联邦学习主程序
├── dataset.py              # 数据集加载与预处理
├── model.py                # 神经网络模型
├── train.py                # 联邦学习训练脚本
├── requirements.txt        # 项目依赖
├── config.py               # 配置文件
├── results/                # 存储训练结果
├── templates/              # Web模板文件
│   └── index.html          # 训练结果展示
└── static/                 # 静态文件(CSS、JS等)

1. requirements.txt 文件

Flask==2.2.5
torch==1.13.1
torchvision==0.14.1
pySyft==0.6.0
scikit-learn==1.0.2
pandas==1.4.2
numpy==1.21.4
requests==2.26.0

2. config.py 文件

配置文件,包含联邦学习的参数、数据集路径等。

import os

# 配置路径
DATASET_PATH = os.path.join(os.getcwd(), 'NSL-KDD')

# 联邦学习参数
BATCH_SIZE = 32
EPOCHS = 5
LEARNING_RATE = 1e-4
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL_SAVE_PATH = os.path.join(os.getcwd(), &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码空间站TH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值