SITS:卫星图像时间序列分析工具
项目地址:https://gitcode.com/gh_mirrors/si/sits
项目介绍
SITS
(Satellite Image Time Series)是一个开源的R包,专门用于卫星图像时间序列分析。它为地球观测数据立方体(Earth Observation Data Cubes)提供了强大的机器学习技术支持。通过SITS
,用户可以轻松地从云服务提供商(如AWS、巴西数据立方体、数字地球非洲等)获取图像集合,构建分析就绪的数据立方体,并应用机器学习模型进行分类。
项目技术分析
SITS
的核心技术包括:
- 数据立方体构建:从云服务中获取分析就绪的图像集合,构建规则的数据立方体。
- 时间序列提取:从数据立方体中提取标记的时间序列,用于训练样本。
- 样本质量控制:使用自组织映射(Self-Organised Maps)进行样本质量控制。
- 机器学习与深度学习模型训练:支持多种机器学习和深度学习模型的训练,包括调优和分类。
- 空间-时间分割:运行空间-时间分割方法,进行基于对象的时间序列分类。
- 后处理:使用贝叶斯平滑进行后处理,去除异常值,并估计分类图像的不确定性。
项目及技术应用场景
SITS
适用于多种地球观测数据分析场景,包括但不限于:
- 土地覆盖分类:通过卫星图像时间序列,对土地覆盖类型进行分类。
- 农业监测:监测农作物的生长情况,预测产量。
- 环境监测:监测森林砍伐、火灾、洪水等环境事件。
- 城市规划:分析城市扩展和土地利用变化。
项目特点
- 多源数据支持:支持从多个云服务提供商获取数据,包括AWS、巴西数据立方体、数字地球非洲等。
- 强大的机器学习支持:内置多种机器学习和深度学习模型,支持模型调优和分类。
- 灵活的时间序列处理:能够处理不规则的时间序列数据,并将其转换为规则的数据立方体。
- GPU加速:支持使用CUDA兼容的NVIDIA GPU进行深度学习模型的分类,提供高达10倍的加速效果。
- 丰富的文档和示例:提供详细的文档和Kaggle示例,帮助用户快速上手。
总结
SITS
是一个功能强大的开源工具,适用于需要进行卫星图像时间序列分析的研究人员和开发者。无论你是从事土地覆盖分类、农业监测还是环境监测,SITS
都能为你提供强大的技术支持。立即访问SITS GitHub页面,开始你的地球观测数据分析之旅吧!
sits Satellite image time series in R 项目地址: https://gitcode.com/gh_mirrors/si/sits