2012年《Satellite Image Time Series Analysis Under Time Warping》:动态时间规整(DTW)在遥感中的应用

作者:François Petitjean、Jordi Inglada、Pierre Gançarski

发表期刊:IEEE Transactions on Geoscience and Remote Sensing (IF 8.125)

目录

背景

遥感影像时间序列应用 所面临的问题

时间维度的使用方式

1) Time as identifier

2) Pairwise time ordering

3) Time ordering the sequence

时序的相似性度量

1) Euclidean Distance

2) Compression-Based Dissimilarity Measure

3) Levenshtein Distance / Edit Distance

4) Longest Common Subsequence(LCSS)

DTW 介绍

将 DTW 应用于 遥感 需要考虑的问题

1、DTW Versus Multidimensional Sequences

2、Avoiding Inconsistent Temporal Distortions

3、Handling Cloud-Contaminated Images

DTW在遥感中的应用实例

实验

1、使用2006年的数据进行聚类

2、同时使用2007年和2008年的数据进行聚类

3、两个年份(2007和2008)之间的 Domain Adaption

结论


背景

        DTW(Dynamic Time Warping,动态时间规整),由Sakoe H等人发明于语音识别领域:1971年《A dynamic programming approach to continuous speech recognition》;1978年《Dynamic programming algorithm optimization for spoken word recognition》。

遥感影像时间序列(SITS)应用 所面临的问题

        SITS(Satellite Image Time Series,遥感影像时间序列):一种在空间和时间上都高度结构化的数据。空间结构指 像元的坐标(x, y),是识别不同区域、比较不同值的基础。时间结构指 数据获取时间 或 获取数据的时间顺序。

(a) reference data

        参考影像难以实时更新。

        解决方法:使用非监督方法 / 将历史数据当做现实参考

(b) irregular sampling (由sensor引起的)

        时间上的采样频率的稳定性较差。比如:如果每个季节只有一张影像,则在采样时间段内几周的扰动对结果的影响很小;但若每个月有几张影像,几周的扰动对结果的影响就会很大。

        因此,处理SITS的算法必须考虑到采样频率的不规律性,才能充分挖掘可用的数据。

(b) pseudo periodic phenomena (由observed objects引起)

        很多phenomena of interest会被外界环境的变化扰动,使得 观测到的物理变量的temporal behavior与canonical temporal profiles不同。

        比如,植物生长周期理论上有一些阶段性行为,但这些行为会受天气、人为扰动等的影响,这些影响使得实际的植物生长行为与理论行为产生偏差,使得观测到的NDVI时序与理论有偏差。

        因此,处理SITS的算法最好对时间上的扭曲不敏感(have some kind of invariance to temporal stretching or dilation)。

时间维度的使用方式

        根据 使用时间维度的方式,对方法进行分类,可以描述time structuring的不同级别。例子:image differencing只利用了一些影像的顺序,frequency analysis:利用了整个序列的顺序。

        本文旨在定义一个 既可用于 abrupt 变化分析、也能用于 long-term 变化分析 的时间序列描述器(descriptor);因此,不区分 bidate 和 multidate 方法。

记号: t1, t2,…,tn   表示   image 1, image 2, … , image n 

            <  表示 影像的时间顺序 

            f  是一个 输入2张影像、输出1张影像 的二值函数。

1) Time as identifier

        时间只是一个用于区分数据的属性,序列中的影像之间没有顺序。这类方法通常会将 几张不同的影像 合成 一张有许多属性的影像。

        优点:使用简单;可以解决(b) irregular sampling。

        缺点:没有挖掘时间行为;有些区域 可能仅仅因为某些事件的频率不同 就被孤立;打乱影像的顺序 不会影响结果。

a) Data linear transformation

        基于统计学理论。比如,主成分分析、最大自相关因子。

b) Classification

        对合成后的影像使用一些分类算法,比如K-means、Expectation Maximization。

c) Change detection methods based on classification comparison

        先对每个影像单独进行分类,再将各张影像结合,以产生一个分类结果。

        优势:不需要影像之间存在可比较的radiometric levels (如 辐射标准化) 即可使用≥2张影像。

2) Pairwise time ordering

        利用时间成对地structure影像:tt, … , tn-1 tn 

        这类方法刚开始用于bitemporal分析,后来扩展到multitemporal。扩展方法一般是多次应用,比如:f( f(t1,t2),  f(t3,t4) )f( f( f(t1,t2)t3)t4)

        缺陷:① 先应用到 (t1,t2)、再应用到 (t3,t4) 时,并未利用 t2t之间的顺序。

                  ② 多次应用会有风险:结果取决于 f 的性质,多次应用可能放大 f 的缺陷。

a) Difference / Ratio / Combination

        按照时间顺序组合t和(t-1)影像,组合方式可以是 减法、除法 或 更复杂的方式。通常,会对 组合后的影像 进行 thresholded或classified,从而识别变化区域。

b) Change Vector Analysis

        用change之前和之后的2个multiband值,在多维空间中建立1个vector。这个vector的norm和angle,表现了change的type和intensity。

        norm:范数,具有“长度”概念的函数。赋予 矢量空间内的所有矢量 非零的正长度或大小。

        Change Vector Analysis 是为双时相数据设计的,且只能用于双时相。

c) Linear Regression

        此类方法认为 t 时刻 与 t-1 时刻 的数据线性相关。回归的参数(residual)用于表征change。

        有研究表明,Linear Regression一般没有image differencing效果好。

3) Time ordering the sequence

        利用时间structure整个序列:(t1<t2) ∩ (t2<t3) ∩ … ∩ (tn-1<tn)  ⇔   tt tn-1 tn

a) Frequent pattern mining

        此类方法提取了radiometric evolutions的frequent subsequences。

        优势:对噪声不敏感,提取了有意义的patterns。

        缺点:产生了很多很多patterns,过滤出有效信息较为困难。为了缩小搜索范围,需要进行一个discretization步骤。该步骤对理解序列至关重要。

b) Frequency analysis

        使用Fourier或小波变换,对radiometric time series进行decomposition。

        优势:可以handle整个时序,且较为稳定。

        缺点:必须对时序进行 regular sampling,即 采样的时间间隔必须保持不变。

      如果不要求 regular sampling,使用观测值的总体顺序,与 对每个观测区域的evolution behaviors 进行分析,所得的结果,似乎是一致的。

时序的相似性度量

要求:① 使用了所有可用的观测数据

           ② 可用于数字值(numeric values)

           ③ 可以捕捉时间行为,比如 shifts、distortions

           ④ 可用于时间采样不规律的序列

           ⑤ 不需要额外参数(parameter free)

           ⑥ 结果容易理解

记号:A = <a1, a2, ... , aT>、B = <b1, b2, ... , bT> 分别表示两个序列。

           δ  表示来自两个序列的两个元素之间的距离

1) Euclidean Distance

        缺点:欧式距离不能捕捉到一些灵活的相似性,不能理解时间序列。比如,X=<a,b,a,a>和 Y=<a, a,b,a>表现了相似的进化特征,但根据欧式距离,X和Y是不同的。

2) Compression-Based Dissimilarity Measure

        上式中,A.B 是 A和B的concatenation,|compress(A)| 指压缩后文件的大小。

        由 E. Keogh 等人于《Towards parameter free data mining》提出。其理论基础是 A. N. Kolmogorov 于文章《On tables of random numbers》中提出的 Kolmogorov complexity

        缺点:距离的效果强烈依赖于压缩算法的选择。且压缩算法是个黑箱,该距离较难理解。

3) Levenshtein Distance / Edit Distance

        由 V. I. Levenshtein 于文章《Binary codes capable of correcting deletions, insertions, and reversals》提出。

        编辑距离将两个符号字符串(symbol string)之间的距离概念形式化。通过对单个符号(symbol)进行一系列编辑操作(edit operations),将一个字符串(string)转换成另一个字符串。编辑操作包括 插入、删除、替换某个symbol。

        优势:可以理解 <a,b,a> 与 <a, a,b,a> 接近(通过插入或删除一个 a),可以理解时间序列。

        缺点:不能用于数字值。且需要定义 插入、删除、替换symbol 等操作的cost。

4) Longest Common Subsequence(LCSS)

        最初用于寻找两个字符串之间最长的公共子序列。后来由M. Vlachos 等人衍生到数字序列:《indexing multidimensional time-series》。

        优点:可以跳过被云污染的值

        缺点:需要定义“common”的含义。由于着重于寻找公共子序列,该方法会遗忘一些观测值;如果被忽视的值恰好很有用,就会遗失有效信息。

对 相似性度量方法 的评价:

a) 应用角度:上述方法不太适用于遥感时序。欧氏距离没有考虑数据的时间性质,基于压缩的方法计算昂贵、难以理解,编辑距离只能用于符号序列,LCSS没有利用到全部数据。

b) 理论角度:本文关注的是基于距离对整个SITS进行分析,大多基于距离的方法(如K-means)需要计算距离的平均值。上述方法只有欧氏距离可以计算平均值。

DTW 介绍

        DTW 是一种 对每个元素的时间演变行为进行分析,并将其与其他元素的演变行为进行比较 的 全局分析方法。

        DTW 满足 “时序的相似性度量”的要求:可以分析整个数据集的时间特征,不会跳过任何值;能够挖掘temporal distortions、比较shifted / distorted profiles;由于optimal alignment of radiometric profile,允许时间采样是 irregular的;无需额外参数。

        注意:DTW对尖锐的噪声(spiky noise)很敏感,用于微波影像前必须去除speckle noise。

        DTW会找到两个序列之间的 最佳全局匹配(optimal global alignment),并提供一个度量这两个序列 总体相似性 的实数值。

        DTW通过匹配两个序列中各元素的坐标,捕捉一些灵活的相似性。具体来说:序列中的每个元素,都会和 另一个序列中至少一个元素 关联。

        最佳匹配的 cost 通过下式递归计算:

        DTW 需要计算 A与B 的 匹配(alignment)和 对比(comparison)。DTW 使用dynamic programming 的原则,允许将重叠的子问题记录到一个 S×T 的代价矩阵中,如上图所示。

        具体算法如上图所示。 首先,分别对矩阵的第一行和第一列初始化;然后,从左到右、从上到下(上图的矩阵是向左旋转了90°的结果,所以应该是从下往上、从左往右计算)计算矩阵中剩下的元素,每个元素的值都是该元素与其左、上、左上元素的cost中的最小值。整个矩阵都计算完毕后,右下角最后一个元素即为这两个序列最佳alignment的分数。

        如果直接将这种递归定义应用到某个算法中,不仅时间cost 特别大;还会出现 overlapping subproblem 问题:DTW 允许记录部分结果,这会导致,即使最小的权重耦合,也会包括 |A|×|B| 的计算。该方法的 时间和空间复杂度 可达  。

将 DTW 应用于 遥感 需要考虑的问题

1、DTW Versus Multidimensional Sequences

        本文将   SITS中一个像元的值   作为   描述一片观测区域的evolution的序列的一个元素

        原始的DTW适用于一维数据(声音信号),即每个元素都可以在一个一维空间中进行描述。然而,在进行SITS分析时,每个元素都是一个多波段像元(多维向量)

        两种通过DTW比较多维序列的方法:

        ① 一次计算一个波段(一个维度),计算n次DTW。

             将 SITS 看成 n 个一维序列,每个子序列为一个波段。此时,算法会分别匹配每个波段,产生 n 个匹配结果。损失了 “一个像元 n 个波段值” 的同步性信息。

        ② 在计算DTW时,使用一个n维的距离度量。

             将 SITS 看成一个序列,其元素是n维的。此时,算法只会产生一个匹配结果,保留了像元的同步性信息(维持了像元的原子性)。

             注意:该情况下,δ 必须采用一个能够比较n维向量的距离度量。

2、Avoiding Inconsistent Temporal Distortions

        有时,专家可能希望引入专业知识。比如,确保冬季和夏季的作物不相似(时间间隔超过两个月即视作不相似)。

        以往研究的本质目标是减小计算复杂度。通过给warping path加global constraints,防止两个元素的alignment太远,从而限制alignments。

        warping path的搜索范围缩小到矩阵的一个子集中,该子集称为warping window。warping window可以是矩阵对角线周围的某个带(Sakoe-Chiba band);也可是某个平行四边形(Itakura Parallelogram),平行四边形可以允许序列中间部分的变形大于边缘部分。

        但是,由于SITS是irregular sampled的,这种global constraints并不适用。

        比如,Sakoe-Chiba band会将离矩阵对角线太远的元素都移除。若 i-j(ω是带宽),则元素(i,j) 不会是warping path的一部分。那么,如果 第1个序列的第 i 个元素 和 第2个序列的第 j 个元素 之间的距离大于 ω 个元素,它们就不能关联。

        Sakoe-Chiba band只能用于 time delay固定的情况,即regularly sampled序列;因为它们的元素个数具有时间意义:ω 个元素的时长=ω× time delay 。

        对于time delay可变的SITS,“所有元素的距离小于 ω 个元素”没有时间意义。因为两个连续元素的time delay(两张连续影像的观测时间间隔)可以是一周、一个月、甚至一年。

        本文 引入 constraints 的主要目标是 避免inconsistent temporal distortions,减小计算复杂度只是一个附加优势。

        本文提出以下改动:给定最大time delay为 ∆t,搜索范围 满足下式:

DateDiff( Date(i), Date(j) )< ∆t

        上式中:Date(i) 表示第1个序列的第 i 张影像的观测时间,Date(j) 表示第2个序列的第 j 张影像的观测时间;DateDiff 是一个函数,返回值是两个日期之间的间隔时间(elapsed time)。

        注意事项:① 确保warping path存在;即:warping window由单个部分构成。

                          ② 为了匹配更复杂的先验知识, ∆t 是可变的。

        在实际操作中,在计算矩阵的每个元素之前,必须先评估上述条件:满足条件,则照常计算;不满足条件,则将该元素的值设置为+∞。这效果相当于 给矩阵加一个mask,使得计算warping path时必须在给定的warping window中。该mask与遥感影像的观测日期一致,可以适用于时间采样不规律的数据。

3、Handling Cloud-Contaminated Images

        在使用单幅遥感影像进行分类时,由于结果一般会剔除云覆盖区域,被云层覆盖的像元不会对结果造成很大影响。

        在处理SITS时,由于原子数据(atomic data)是某个区域的 辐射值序列,云污染影响很大。

        假设一个像元被云覆盖的概率是一个常数:表示观测区域  p 没有云层覆盖的概率。那么,序列没有云层覆盖的概率为。由此可见,即使一个像元被云覆盖的概率很小(一个像元没有云覆盖的概率很大),该像元的一整个序列都没有云覆盖的概率仍然很小。

        三种处理云覆盖的方法:

        ① 保留被云层覆盖的值:会增加噪声。

        ② 剔除主要的被云层覆盖的影像:删除的影像中可能会包含没有云覆盖的像元,没删除的影像中可能存在云覆盖像元(类似①会增加噪声)。

        ③ 只剔除被云层覆盖的值:保留了所有的无云值,但可能导致 各个像元的序列长度不同。此时,就需要一个能够比较不同长度(不同时间采样)的序列的相似性度量。DTW 可以比较不同长度和采样方式的两个序列,同时寻找到两个序列的最佳耦合。DTW的realign能力,可以处理时间轴上的非线性失真。

DTW在遥感中的应用实例

数据信息:

       研究区域位于法国西南部的图卢兹镇附近。共70张Formosat-2卫星影像,时间分布如下图所示。 46张2006年云覆盖很多(30%);13张2007年 和 11张2008年的数据基本没有云层覆盖(<3%)。

       影像的空间分辨率为8m。用到了多光谱数据的 3个波段:近红外、红、绿(蓝波段关于植被的信息很少,且对大气状况十分敏感,易受污染)。

预处理:

(1)正交校正(orthorectify):保证每个像元(x, y) 在整个时间序列中覆盖同样的地理区域。

(2)辐射标准化:保证整个时序中各张影像的辐射值具有可比性。包括 将传感器提供的数字值转换为物理量、大气校正 等操作。

             首先,根据仪器的辐射模型,将数字值转换为反照率(一种太阳辐射的归一化物理量)。

             其次,通过对比真实反照率与模拟反照率,将反照率转换为表面反照率。

        模拟反照率是为了获取测量的大气和几何条件,在大气层顶部模拟得到的。在考虑了大气压力、气溶胶含量和水蒸气含量的影响后,对各种高度都进行了模拟。

        观测时的实际大气情况通过 气象(NCEP:压力、湿度)、臭氧(TOMS\TOAST)、气溶胶(SeaWiFS、Aeronet)和 气候值(climatological)等数据源获取。

时序的构建:

        每张影像高H、宽W、波段数为B,每张影像都可以看作一个函数。序列由N张影像构成,是影像中各像元对应的一系列元组(NIR, R, G)。

        每张影像  In 都与一个云掩膜(cloud mask)相对应,云掩膜定义了被云污染的地理范围。如果某个像元被定义为云污染,则它会被剔除/跳过。

实验设置:

i. 两个像元(坐标)之间的距离度量为squared Euclidean distance。

ii. DTW的平均方法是DBA和AS的结合。

        AS:adaptive scaling。出自 F. Petitjean 等人的《A global averaging method for dynamic time warping, with applications to clustering》 。

iii. 使用 Kappa系数 评估结果

        其中,Pr(a) 表示两个对象的相对一致性;Pr(e) 表示 hypothetical probability of chance agreement,通过观测数据来计算每个观察者随机选择魔偶各类别的概率。

实验

1、使用2006年的数据进行聚类

目的:使用DTW处理长度不同的序列

 

        由上表可见,如果只保留云覆盖<20%的影像(方法②),会去除大量影像,损失大量无云影像。因此,只去除有云的像元(方法③),得到各个像元的时间序列。根据参考地表覆盖图中的地类数量,将这些时间序列分成24个聚类。

        研究了两种情况:(a) 无限制。(b) 限制最大time delay为2个月。结果如下图,(c)为参考地表覆盖图。

 

         结果:(a) 的Kappa系数为86.9%,(b) 的Kappa系数为87.2%。由上图可见,两种DTW都存在 meadow和fallow 的混分,(a) 额外存在 wild land和forest 的混分。

2、同时使用2007年和2008年的数据进行聚类

        没懂啥叫同时聚类,贴个原文:

 

3、两个年份(2007和2008)之间的 Domain Adaption

        经典 Domain Adaption 从一张影像学习分类,用于对另一张影像进行分类;一般在第一张影像上学习时,为了提高模型精度,会用到外部知识。本研究 从2007年的影像学习分类,应用到2008年;不添加额外知识。

难点:如何使得两个序列具有可比性。

具体步骤:

(1) 通过 K-means 由2007年影像 获取25个聚类。

(2) 对每个聚类:

     (a) 根据参考土地分类图的地物类型,计算该聚类的分布(直方图);

     (b) 对每个 出现在该直方图中的、大于该影像1%(1000 个像元)的地物类型,都建立一个新的中心点(对涉及到的序列进行平均)。

(3) 为2008年影像分类,将每个序列分类成和它距离最近的中心点所对应的地物类型。

结果:与2008年的参考地物类型图比较,Kappa系数为84%.其中,corn 分类效果很好,不过存在 corn和soybean 的混分。此外,与上一个实验结果类似,存在 urban和wheat 的混分现象。

结论

        本研究主要解决了SITS应用的两大问题:① irregular sampling in the temporal dimension;② the need for comparison of pairs of time series having different number of samples

        实验1 展示了DTW 处理云污染 和 根据专家知识限制搜索范围 的能力。实验2 显示了DTW如何在同一个区域上同时聚类两个数据集。实验3 属于domain adaptation。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值