探索未来机器人导航:GNM、ViNT 和 NoMaD 模型
项目地址:https://gitcode.com/gh_mirrors/vi/visualnav-transformer
在人工智能和机器人领域,通用导航模型正逐渐成为研究的焦点。由Berkeley AI Research团队推出的General Navigation Models,包括GNM(通用导航模型)、ViNT(视觉导航基础模型)和NoMaD(目标掩模扩散策略),是这一领域的最新突破,旨在实现跨形态的零示教目标条件视觉导航。
项目介绍
GNM、ViNT和NoMaD是一组可泛化的模型,它们能够控制多种不同的机器人,无需特定的前期训练。这些模型不仅在多样化的训练数据集上表现卓越,还支持高效的微调或适应新环境与任务。通过这个开源项目,研究人员和开发者可以访问代码、预训练模型以及在TurtleBot2/LoCoBot等机器人上部署的示例代码。
项目技术分析
该项目采用Python编写,依赖于CUDA 10+和GPU资源,通过conda环境管理工具进行搭建。核心训练脚本train.py
支持自定义数据集训练,并提供数据处理、数据划分及模型训练的功能。模型文件存储在vint_train/models/
中,同时包含了收集和转换ROS包为训练数据的脚本。
ViNT是一种基于Transformer的基础模型,可以用于视觉导航任务。NoMaD利用了目标掩码扩散策略,适用于导航和探索任务。所有模型均经过一系列公开和私有数据集的训练,包括RECON、TartanDrive、SCAND、GoStanford2(修改版)和SACSoN/HuRoN。
应用场景
这些模型的应用范围广泛,涵盖了从室内导航到复杂环境下的自主探索。例如,可用于家庭服务机器人寻找指定物品,仓库自动化系统中的路径规划,甚至无人机的自主飞行。由于其通用性和灵活性,它们也可应用于模拟环境中,如CARLA,进行测试和验证。
项目特点
- 通用性:能控制各种不同类型的机器人,无须针对每种机器人重新训练。
- 高效微调:模型可在新的机器人或任务上进行快速微调,以适应变化的环境。
- 多样化训练:在广泛的、跨形态的数据集上训练,提高模型的泛化能力。
- 易于部署:提供了详尽的部署指南,能够在TurtleBot2/LoCoBot等实际机器人上运行。
若想了解更多关于该项目的信息,可以访问项目主页,查看相关论文,下载预训练模型,或者直接参与到代码贡献中来,一起推动智能机器人的未来发展。