自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 【已解决】【Windows】【Linux】大数据开发环境配置

常见的虚拟机软件主要有两款VMware和VirtualBox。VMware是商付费软件,而VirtualBox是免费软件,对于一般用用的话VirtualBox基本可以应付大多数情况了。本机电脑:Windows11。

2024-09-15 00:25:03 364

原创 Linux与Ubuntu:内核与发行版的关系

在计算机科学的领域内,Linux和Ubuntu这两个术语频繁出现,但它们之间的确切联系往往不为大众所熟知。本文旨在深入探讨Linux内核与Ubuntu操作系统发行版之间的技术关系,并阐明它们各自的独特性质。

2024-09-14 18:09:52 514

原创 【JDBC】Java数据库连接的艺术

JDBC就是使用Java语言操作关系型数据库的一套API

2024-09-14 11:59:20 606

原创 【数据库原理及应用】【数据库系统概论第5版王珊】期末考试复习必备

文档中包含的知识点主要涉及数据库的创建、表的创建与修改、索引的创建与管理、视图的创建与管理以及数据的查询与更新。(3)将 teacherInfo 表的name字段的数据类型改为 VARCHAR(30)。(8)将 teacherInfo 表改名为 teacherInfo_Info。(9)将 teacherInfo_Info表的存储引擎更改为MyISAM类型。(6)将 teacherInfo 表的address字段删除。(4)将birthday字段的位置改到sex字段的前面。将字段移动到表定义的开始位置。

2024-09-05 21:47:35 370

原创 【数据库原理及应用】期末考试复习 知识点【数据库系统概论第5版王珊】

【代码】【数据库原理及应用】期末考试复习 知识点【数据库系统概论第5版王珊】

2024-07-02 10:55:38 549

原创 【SQL】下|牛客网SQL非技术入门40道代码|练习记录

表中存在,并且该用户是山东大学的学生时,这些记录才会被包含在最终结果集中。这与前两个查询不同,前两者使用左连接保留了。23统计每个学校各难度的用户平均刷题数(这题有详细解题步骤,因为开始变难了)刚刚在牛客提交,明明是一样的答案提交错误,等了一会就可以了。说明:某学校用户平均答题数量计算方式为该学校用户答题总。22统计每个学校的答过题的用户的平均题数。默认为内连接),而非之前的左连接(法2:也可以在连接的同时进行筛选。24统计每个用户的平均刷题数。27查看不同年龄段的用户明细。29计算用户的平均次日留存率。

2024-06-21 16:08:58 875

原创 【开卷考】如何准备之【信息资源组织与管理】期末考试复习必备

❗️首先,适用于考试范围为课本内容或者课堂内容,如果有那种拓展题,脱离课本的,那我就没办法了。✅一定要熟悉熟悉熟悉课本1. 第一遍略看课本,可以不用每句话都做细读,但是整体章节内容要熟悉。我一般会做个思维导图,方便去梳理课本。2.精读课本,大概要三遍以上。💡对照着思维导图,主要目的是熟悉每个小节的内容有哪些概念,论点,论据要达到什么程度呢?每句话都看过,起码知道那些话是有用的,那些是作为辅助材料帮助理解的。

2024-06-19 15:59:42 480

原创 【已解决】迅雷的迅雷影音怎么卸载?Win11 Windows10也适用

点击XMP直到找到xmpstart.exe试图在这个文件夹里寻找XmpUnin9stall.exe。

2024-06-19 14:51:26 7205 3

原创 【多元统计分析】期末考试复习必备!按题型分类

一,简答题二,证明题三,计算题

2024-06-12 19:05:57 490

原创 【已解决】windows电脑连蓝牙耳机总是断断续续?

bug出在电脑的蓝牙驱动,解决方法:安装最新的无线驱动即可。

2024-06-12 13:16:45 5803 2

原创 【多元统计分析】期末复习必备!作业汇总

作业一作业二作业三作业四作业五

2024-06-10 17:57:51 296

原创 【SQL】上|牛客网SQL非技术入门40道代码|练习记录

excel里也是先筛选再聚合?好处是:先筛选之后数据量就变少了,然后再计算(或者更复杂的操作),数据量越少,执行速度就快,大概率。在excel里会怎么做:先求出平均发帖和回帖情况(用数据透视表做),然后再筛选符合条件的。刚刚在牛客提交,明明是一样的答案提交错误,等了一会就可以了。关键字:having,having是在聚合之后的数据里进行筛选。说明:某学校用户平均答题数量计算方式为该学校用户答题总。17改题:计算男生人数以及全班的平均GPA。统计每个学校的答过题的用户的平均题数。8查找某个年龄段的用户信息。

2024-06-10 15:16:24 416

原创 【数据分析基础】实验四 matplotlib数据可视化处理

一、知识点小结在本次实验中,我深入学习了matplotlib库的安装和使用,了解了其绘图的一般流程,并熟练掌握了折线图、散点图、柱状图、饼状图和雷达图的绘制方法。此外,我还学习了如何设置图形的常用属性,如坐标轴、图像标题和图例等。通过实验,我掌握了如何切分绘图区域,并在不同的子图中绘制不同的图形,这对于数据的多角度展示非常有帮助。二、实验体会在实验过程中,我遇到了一些挑战,尤其是在设置中文字体和调整图形属性时。我通过查阅文档和在线资源,逐步解决了这些问题。

2024-06-07 11:26:56 1177

原创 【Pandas】可视化plot()参数kind

plt.show()其它图类型(Other plots)条形图:使用kind='bar'或创建水平或垂直条形图。直方图:使用绘制数据分布的直方图。箱型图:使用kind='box'可视化数据分布和异常值。密度图:使用kind='kde'或绘制。面积图:使用绘制,类似于折线图,但区域会被填充。散点图:使用展示两个变量之间的关系。六边形分布图:使用绘制。饼图:使用kind='pie'展示各部分占总体的比例。当然了,您也可以使用DataFrame.plot.方法创建这些其他绘图。

2024-06-06 12:17:48 1504

原创 【数据分析基础】实验numpy、pandas和matplolib

ddf.plot(x='柜台', y='交易额', kind='pie', labels=ddf['柜台'], autopct='%0.2f%%')ddf = df.loc[:, ['柜台', '交易额']].groupby(by='柜台', as_index=False).sum()df = pd.read_excel(r"数据分析基础课程/超市营业额2.xlsx")

2024-06-06 09:15:00 1665

原创 【数据分析基础】实验二 Python程序流程控制、函数设计与使用

在本次实验中,我深入地学习了Python中的流程控制、函数设计和使用,以及异常处理和输入验证等重要概念。通过编写不同的程序,我不仅巩固了理论知识,而且提高了解决实际问题的能力。通过本次实验,我体会到了编程不仅仅是写代码,更重要的是如何设计出清晰、高效、可维护的程序。我学会了如何通过编写函数来简化复杂的问题,并通过合理的输入验证来提高程序的健壮性。阅读更多的Python代码,特别是那些开源项目和专业代码库,以学习更优秀的编程实践。我学习了如何定义和调用函数,这有助于我创建模块化的代码,提高了代码的复用性。

2024-06-06 02:30:00 738

原创 【数据分析基础】实验三 文件操作、数组与矩阵运算

知识点小结:我掌握了使用with语句进行上下文管理,这是一种优雅且安全的方法来处理文件操作。我学会了如何使用Python标准库中的os和os.path模块来操作文件和目录。我了解了如何安装并使用扩展库python-docx和openpyxl来处理Word和Excel文件。我熟练掌握了numpy库的基本使用,包括数组的创建、运算以及矩阵的生成和运算。实验体会:通过实践,我体会到了Python在数据处理方面的强大功能。特别是在处理Excel和Word文档时,合适的库可以极大地提高工作效率。

2024-06-05 10:36:11 974

原创 【数据分析基础】实验一 Python运算符、内置函数、序列基本用法

对于Python的序列类型,如列表、元组、字典和集合,我通过实验加深了理解,并学会了如何有效地使用它们来存储和操作数据。我也接触了函数式编程的概念,通过使用map(), filter()等函数,我学会了如何将问题分解成更小的、可复用的部分,并通过函数的组合来解决它们。我也通过实际编程,熟练运用了Python的内置函数,比如max(), min(), sum(), sorted()等,这些函数极大地简化了我的数据处理工作。我发现,对于一些复杂的编程问题,我还需要更多的练习和学习才能找到最佳的解决方案。

2024-06-05 02:00:00 918

原创 【数据分析基础】期末复习必备!Python编程语言知识点

在Python编程语言的学习过程中,测试题是检验我们理解程度的重要工具。本文将介绍一些Python编程语言的测试题目,提供正确答案,并给出做题思路,帮助大家更好地掌握Python的知识点。

2024-06-04 00:28:45 1116

原创 【imblearn】【样本不均衡】使用SMOTE上采样处理样本不均衡问题python代码实现

先准备好特征矩阵X 和 标签y。

2024-06-02 21:08:15 163

原创 【sklearn】【逻辑回归1】

所用的库和版本大家参考:在过去的四周中,我们接触了不少带“回归”二字的算法,回归树,随机森林的回归,无一例外他们都是区别于分类算法们,用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。要理解逻辑回归从何而来,得要先理解线性回归。线性回归是机器学习中最简单的的回归算法,它写作一个几乎人人熟悉的方程:通过函数z,线性回归使用输入的特征矩阵X来输出一组连续型的标签值y_pred,以完成各种预测连续型变量的任务 (比如

2024-06-02 19:12:01 902

原创 【已解决】如何在IDEA上部署JSP WEB开发项目

2.1文件--->项目结构,SDK建议jdk13或者jdk17,我使用了jdk17。以我的课设为例,教大家拿到他人的项目后,如何在IDEA上部署。1.4将WEB-INF中的classes设置为源。1.3将准备好的项目文件复制添加到该文件夹。2.2模块--->JAR或目录。5.1当前文件--->编辑配置。1.1复制“位置”的路径。3.2修改这两处路径。

2024-06-02 16:29:34 528

原创 Calibre强大的电子书管理软件

最近开始使用这个软件,契机是想要把epub文件转成pdf,wps没这个功能,就只能另寻它法。不过最后想要的是可搜索内容的文件,还是要用wps转成文字版pdf。

2024-05-28 18:14:03 368

原创 【已解决】自用记录| IntelliJ IDEA Ultimate2024下载安装,教育版

安装完成啦, 可以New Project新建一个项目试试。-->选择安装目录:避免中文和空格-->next。-->Log In,去网页登录账号。-->Activate激活教育版。-->按需勾选-->next。下载完成之后双击运行安装。

2024-05-27 21:54:00 661

原创 自用记录| MySQL下载安装

这里next完之后,安装程序直接关闭了,没有设置密码的环节, 不要慌,先配置环境(不知道是不是因为安装过还是系统问题,反正是有一个临时密码,所以配置完环境再修改密码就好了)Installe有两个,第一个(大小2.4M)是通过联网在线安装,会在线下载安装包;打开后是一个安装向导,这个安装向导会先帮我们安装一个 mysql-installer 的程序,再通过该程序安装MySQL。起因是在终端命令行使用mysql无法启动MySQL,而这样设置后可以免输密码,也不错。找到高级系统设置,win11为例,先找到设置。

2024-05-27 21:49:17 630

原创 MySQL的Shell和Server以及Workbench之间的关系

MySQL的Shell和Server是MySQL数据库系统的不同组件,它们之间的关系是客户端与服务端的关系。

2024-03-25 23:32:24 1355

原创 baseline是什么

大佬分享的比赛代码,帮助快速入门。

2023-08-03 13:53:31 115

转载 pyspark和spark的区别

PySpark 适合那些偏向于使用 Python 的数据科学家和工程师,而 Spark 则适合那些偏向于使用 Java 或 Scala 的数据工程师和开发者。PySpark 是 Apache Spark 在 Python API 上的一个开源项目,它提供了一个用于 Python 编程语言的 Spark API。总之,PySpark 和 Spark 都是 Apache Spark 的一部分,提供了不同的编程接口来适应不同的用户需求。选择使用哪个版本取决于您的编程语言偏好、数据处理任务的规模和性能需求等因素。

2023-08-03 09:52:41 1089

原创 LGBM的原生API简单调用

不过这里因为鸢尾花数据是多分类问题,LGBM模型在默认情况下是回归类模型,因此需要通过超参数字典传输建模类型,即objective超参数取值为multiclass(目标为解决多分类问题),同时设置num_class取值为3,即3个类别的多分类问题。当然,除了sklearn API调用外,我们还可以使用LGBM原生API进行模型训练。因此,该代码会返回一个长度和 `X_test` 中样本数相等的一维数组,其中每个元素表示对应样本的分类预测结果,是一个整数。然后创建超参数字典。

2023-06-25 22:46:05 234

原创 LGBM的sklearn API简单调用

gbm是一个机器学习模型,predict_proba()方法会返回输入数据X_test在所有可能标签上的概率值,然后argmax()函数会返回具有最高概率值的标签。对于LGBM来说,支持多种不同类型的数据输入以及多种不同类型的训练方式,这里我们先从最简单的应用情况开始介绍,即围绕CSV格式数据进行DATaFrame数据格式读取,并采用类sklearn的建模风格进行模型的训练。然后是模型实例化过程。在sklearn API中,模型已经设置好了默认超参数取值,可以完全不认识任何模型超参数的情况下进行建模。

2023-06-25 16:49:32 542

原创 LightGBM的安装部署

而LGBM的另一种调用方式,即使用原生API进行建模,则会复杂很多,当然原生API也提供了非常多sklearn API中没有的功能。从建模流程上来看,使用原生LGBM API时需要先对数据集进行封装,转化成一种LGBM库定义的一种特殊的数据格式,然后再设置超参数字典,最终带入封装好的数据集和定义好的超参数字典进行训练,而在训练的过程,则支持多种不同的损失函数设置、以及交叉验证的优化流程的自动实现,并且原生API还提供了非常多实用功能,例如提供了GPU加速、精细化控制每一轮迭代的超参数等方法。

2023-06-25 16:22:02 2592 1

原创 集成学习 模型融合方法 投票法Voting 硬投票与软投票的区别

需要注意的是,软投票要求基本模型能够输出类别的概率或置信度估计,而硬投票只需要基本模型的类别预测结果。在软投票中,假设模型1对类别A的概率为0.8,模型2对类别A的概率为0.6,模型3对类别B的概率为0.9。因此,最终的预测结果是类别B。在硬投票中,每个基本模型都对样本进行预测,并投票选择出现次数最多的类别作为最终的预测结果。具体而言,对于二分类问题,硬投票会选择出现次数最多的类别,而软投票会选择平均概率最高的类别。在硬投票中,类别A出现的次数为2次,类别B出现的次数为1次,所以最终的预测结果是类别A。

2023-06-19 16:14:30 1628

原创 Anaconda虚拟环境,更新库

需要先指定环境再进行操作命令:1、查看已有的虚拟环境2、切换到想要操作的虚拟环境,conda activate 加想要操作的环境的名称, 假设我要操作名为env_name的环境这个时候就可以继续更新啦~3、更新所有包:conda update --all4、更新某个具体的包:conda update package。

2023-06-18 21:07:22 1139 1

原创 mm机器学习模型概述

机器学习模型可以分为以下几大类:1. 监督学习 (Supervised Learning)2. 非监督学习 (Unsupervised Learning)3. 半监督学习 (Semi-supervised Learning)4. 强化学习 (Reinforcement Learning)其中,监督学习和非监督学习是最常用的两种机器学习方法。1. 监督学习监督学习要求数据集中每个样本都有标签,即已知输入和输出之间的对应关系。在训练时,模型通过不断调整参数来尽可能地拟合这个对应关系。主要优势在于可以很好地解决分

2023-04-21 12:50:51 107

数据分析基础的实验所用到的数据集

知识领域:数据分析 内容关键词:实验作业、数据预处理、模型构建、结果评估 用 用途:学习、研究、实践技能提升

2024-06-07

Calibre v7.11.0

Calibre v7.11.0

2024-05-28

win-patch-backend+update-v7.11.0.zip

win-patch-backend+update-v7.11.0.zip

2024-05-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除