开源项目 Aspect-Based-Sentiment-Analysis 使用教程

开源项目 Aspect-Based-Sentiment-Analysis 使用教程

Aspect-Based-Sentiment-AnalysisA paper list for aspect based sentiment analysis.项目地址:https://gitcode.com/gh_mirrors/as/Aspect-Based-Sentiment-Analysis

1. 项目的目录结构及介绍

Aspect-Based-Sentiment-Analysis/
├── data/
│   ├── processed/
│   └── raw/
├── models/
│   ├── __init__.py
│   └── absa_model.py
├── notebooks/
│   └── example.ipynb
├── scripts/
│   ├── preprocess.py
│   └── train.py
├── config/
│   └── config.yaml
├── README.md
├── requirements.txt
└── main.py
  • data/: 存放数据文件,包括原始数据和处理后的数据。
  • models/: 存放模型定义和相关代码。
  • notebooks/: 存放Jupyter Notebook示例。
  • scripts/: 存放预处理和训练脚本。
  • config/: 存放配置文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。
  • main.py: 项目启动文件。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责初始化配置、加载数据、训练模型和评估模型。以下是 main.py 的主要功能:

import argparse
from config.config import load_config
from scripts.preprocess import preprocess_data
from scripts.train import train_model

def main():
    parser = argparse.ArgumentParser(description="Aspect-Based Sentiment Analysis")
    parser.add_argument("--config", type=str, default="config/config.yaml", help="Path to the config file")
    args = parser.parse_args()

    config = load_config(args.config)
    preprocess_data(config)
    train_model(config)

if __name__ == "__main__":
    main()
  • load_config: 加载配置文件。
  • preprocess_data: 预处理数据。
  • train_model: 训练模型。

3. 项目的配置文件介绍

config/config.yaml 是项目的配置文件,包含数据路径、模型参数、训练参数等配置项。以下是配置文件的部分内容:

data:
  raw_path: "data/raw/reviews.csv"
  processed_path: "data/processed/processed_reviews.csv"

model:
  name: "absa_model"
  hidden_size: 256
  num_layers: 2

training:
  batch_size: 32
  epochs: 10
  learning_rate: 0.001
  • data: 数据路径配置。
  • model: 模型参数配置。
  • training: 训练参数配置。

通过以上配置文件,用户可以灵活调整项目的数据路径、模型结构和训练参数。

Aspect-Based-Sentiment-AnalysisA paper list for aspect based sentiment analysis.项目地址:https://gitcode.com/gh_mirrors/as/Aspect-Based-Sentiment-Analysis

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平依佩Ula

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值