Abstract
基于Aspect的情感分析(ABSA)能提供比一般情感分析更详细的信息,因为它旨在预测文本中给定的aspect或实体的情感极性。我们把以前的工作总结为两类:aspect分类情感分析(aspect-category sentiment analysis (ACSA)) 和aspect实体情感分析( aspect-term sentiment analysis (ATSA) )。大部分以前的工作使用了LSTM和attenion机制来预测有关目标的情感极性,但是常常模型很复杂并且需要很长的训练时间。我们提出了一个更精确有效的基于卷积神经网络(convolutional neural networks )和门机制( gating mechanisms )的模型。首先一种新的Tanh-ReLU 门单元能够根据给定的aspect或实体选择输出的情感特征。这个结构比应用于现有模型的注意力层简单得多。然后,我们的模型的计算在训练中很容易并行化,因为卷积层不像LSTM层那样有时间依赖性,并且门单元也能够独立的工作。在SemEval 数据集上的实验表明我们工作的效率。
Introduction
在用户生成的评论进行意见挖掘和情绪分析 (庞和李, 2008) 可以为提供商和消费者提供有价值的信息。除了预测整体情绪极性, 基于细粒度方面的情绪分析 (ABSA) (刘和张, 2012) 能够比传统情绪分析更好地理解评论。具体地说, 我们对文本中的aspect类别或目标实体的情绪极性感兴趣。有时, 也会加上aspect实体提取 (薛等, 2017)。有关ABSA已经开发了许多模型, 但有两个不同的子任务, 即aspect分类情绪分析 (ACSA) 和aspect实体的情绪分析 (ATSA)。ACSA 的目标是对于给定的几个预定义的类别之一的aspect预测情绪极性。另一方面, ATSA 的目标是识别文本中出现的目标实体的情绪极性, 这可能是一个多词短语或一个单词。对aspect实体作出贡献的不同词语的数量可能超过1000。例如, 在句子 "Average to good Thai food, but terrible delivery. .", ATSA 会问情绪极性对实体Thai food ;虽然 ACSA 会问aspect情感极性 service , 即使词service 没有出现在句子中。
我们的模型在更少的训练时间下能得到更好的精确度。对于ACSA任务,我们的模型有两个单独的卷积层在embedding层之上,这个embedding层的输出是由新型门单元的组合组成的。有多重过滤器的卷积层能够在每个可接受的领域的许多粒度下有效的抽取n-gram特征。门单元被设计为有两个非线性门,两个中的任何一个都和一个卷积层链接。在给定的aspect信息下,对于情感的预测能够抽取aspect