探索安全的未来:MACPO 多智能体约束策略优化

探索安全的未来:MACPO 多智能体约束策略优化

项目地址:https://gitcode.com/gh_mirrors/mu/Multi-Agent-Constrained-Policy-Optimisation

在多智能体强化学习的广阔领域中,如何确保系统在探索和提升性能的同时遵守关键的安全约束?这就是**Multi-Agent Constrained Policy Optimisation (MACPO)**项目想要解决的问题。MACPO不仅仅是一个算法,它是一套全面的解决方案,旨在为安全的多智能体环境提供可靠的学习框架。

项目介绍

MACPO基于论文《安全的多智能体强化学习用于多机器人控制》,构建了一个以约束马尔科夫游戏为模型的理论体系,利用信任区域方法来保证在每一步迭代中都逐步提高奖励并满足安全约束。通过结合Constrained Policy Optimisation (CPO) 和多智能体学习的最新进展,MACPO及其变种MAPPO-Lagrangian提供了强大的工具,让智能体在复杂环境中协同工作,同时严格控制风险。

项目技术分析

MACPO的核心是将安全约束纳入到多智能体强化学习的更新过程中。它采用了信任区域优化策略,使得智能体在追求最优策略时能够保持在安全的参数空间内。这种方法不仅确保了奖励的单调递增,而且在每一次训练迭代后都能满足设定的安全约束条件。

应用场景

MACPO设计用于解决各种多智能体协作任务,特别是那些存在潜在危险或需要严格操作限制的场景,如自动驾驶、无人机编队飞行、工厂自动化等。Safety Multi-Agent Mujoco环境则为此提供了理想的测试平台,模拟了多个智能体在狭窄通道中的移动,既要达到目的地又要避免碰撞墙壁或触发其他危险情况。

项目特点

  • 安全性:MACPO和MAPPO-Lagrangian在每次迭代中都保证满足预设的安全约束,确保了系统行为的可靠性。
  • 效率与性能平衡:实验结果显示,这两个方法在兼顾性能和约束满足方面显著优于其他基准算法,如MAPPO和IPPO。
  • 理论保障:具备理论上的单调性证明,为学习过程的稳定性和可预测性提供了保证。
  • 易于使用:项目提供了详细的安装指南和脚本,用户可以快速上手训练和评估模型。

通过MACPO项目,开发者和研究人员现在有了一个强大的工具,可以更安心地将多智能体强化学习应用到现实世界的复杂问题中。无论是为了提升现有系统的安全性还是开发全新的智能协作方案,MACPO都是值得信赖的选择。

Multi-Agent-Constrained-Policy-Optimisation Multi-Agent Constrained Policy Optimisation (MACPO; MAPPO-L). 项目地址: https://gitcode.com/gh_mirrors/mu/Multi-Agent-Constrained-Policy-Optimisation

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓬玮剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值