DeepCAD 项目使用教程

DeepCAD 项目使用教程

DeepCAD code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models" 项目地址: https://gitcode.com/gh_mirrors/de/DeepCAD

1. 项目目录结构及介绍

DeepCAD 项目的目录结构如下:

DeepCAD/
├── cadlib/
├── config/
├── dataset/
├── evaluation/
├── model/
├── trainer/
├── utils/
├── LICENSE
├── README.md
├── lgan.py
├── pc2cad.py
├── pc2cad_train.py
├── requirements.txt
├── teaser.png
├── test.py
└── train.py

目录结构介绍

  • cadlib/:包含与 CAD 相关的库文件。
  • config/:存放项目的配置文件。
  • dataset/:存放数据集文件,包括原始 JSON 文件和向量化表示的 CAD 序列。
  • evaluation/:包含用于评估模型性能的脚本。
  • model/:存放模型的定义和实现。
  • trainer/:包含训练模型的相关代码。
  • utils/:包含各种实用工具脚本,如可视化和导出 CAD 模型。
  • LICENSE:项目的开源许可证文件。
  • README.md:项目的介绍文档。
  • lgan.py:用于训练潜在 GAN 的脚本。
  • pc2cad.py:用于处理 CAD 数据的脚本。
  • pc2cad_train.py:用于训练 CAD 模型的脚本。
  • requirements.txt:项目所需的 Python 依赖包列表。
  • teaser.png:项目的宣传图片。
  • test.py:用于测试和评估模型的脚本。
  • train.py:用于训练模型的主脚本。

2. 项目启动文件介绍

train.py

train.py 是 DeepCAD 项目的主要启动文件,用于训练深度生成网络。以下是该文件的主要功能:

  • 训练自动编码器:通过指定超参数和配置文件,启动自动编码器的训练过程。
  • 保存训练日志和模型:训练过程中生成的模型和日志将保存在 proj_log/ 目录下。

test.py

test.py 用于测试和评估训练好的模型。以下是该文件的主要功能:

  • 自动编码:加载训练好的自动编码器模型,对测试数据进行重建。
  • 随机生成:结合潜在 GAN 生成新的 CAD 序列。
  • 结果保存:测试结果将保存在 proj_log/ 目录下的指定路径中。

lgan.py

lgan.py 用于训练潜在 GAN(生成对抗网络)。以下是该文件的主要功能:

  • 训练潜在 GAN:在自动编码器的潜在空间上训练 GAN。
  • 生成潜在向量:生成新的潜在向量,用于后续的 CAD 序列生成。

3. 项目的配置文件介绍

config/ 目录

config/ 目录下存放了 DeepCAD 项目的配置文件,这些文件定义了训练和测试过程中的各种超参数和配置选项。以下是该目录的主要内容:

  • 配置文件:包含训练和测试过程中所需的各种配置参数,如数据路径、模型参数、优化器参数等。
  • 超参数设置:定义了训练过程中的学习率、批量大小、迭代次数等超参数。

配置文件示例

# config/default.py

# 数据路径
data_path = "data/cad_vec"

# 模型参数
model_params = {
    "latent_dim": 128,
    "hidden_dim": 512,
    "num_layers": 3
}

# 训练参数
train_params = {
    "batch_size": 32,
    "learning_rate": 0.001,
    "num_epochs": 100
}

通过修改这些配置文件,用户可以自定义训练和测试过程中的各种参数,以适应不同的需求和环境。

DeepCAD code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models" 项目地址: https://gitcode.com/gh_mirrors/de/DeepCAD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农爱宜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值