mmMesh 使用手册

mmMesh 使用手册

mmMesh mmMesh 项目地址: https://gitcode.com/gh_mirrors/mm/mmMesh

1. 目录结构及介绍

mmMesh 是一个基于毫米波技术的实时三维人体网格构建系统。此项目的核心在于利用商业便携式毫米波雷达(如TI AWR1843BOOST)捕捉并构造出动态的人体3D模型。以下是该项目在GitHub上的基本目录结构及其内容概览:

.
├── 0_preliminary          # 初步设置模块,包括提取SMPL模型的脚本。
│   └── extract_SMPL_model.py
├── 1_mmWave_data_capture  # 实时毫米波数据捕获代码。
│   ├── capture.py
│   ├── streaming.py
│   └── DataCaptureDemo_1843new.lua
├── 2_point_cloud_generation # 从二进制文件生成点云的代码。
│   ├── configuration.py
│   └── pc_generation.py
├── 3_deep_model           # 深度学习模型实现,用于人体网格估计。
│   ├── data.py
│   ├── infer_model.py
│   ├── network.py
│   ├── smpl_utils_extend.py
│   └── train_model.py
├── HISTORY.md             # 项目历史版本记录。
├── LICENSE                # 许可证文件。
├── README.md              # 项目简介和使用说明。
└── .gitignore            # Git忽略文件列表。

  • 0_preliminary: 提供了一个Python脚本用于处理SMPL模型文件,你需要先下载SMPL模型,并通过extract_SMPL_model.py脚本准备训练所需的模型文件。
  • 1_mmWave_data_capture: 包含了启动毫米波雷达数据采集的代码,主要文件是capture.py用于数据收集,配合Lua脚本在Windows端使用。
  • 2_point_cloud_generation: 转换毫米波雷达数据成点云,关键脚本是pc_generation.py
  • 3_deep_model: 深度模型的实现部分,其中train_model.py用于训练模型,infer_model.py用于推理。
  • README.mdLICENSE: 分别包含了快速入门指南和软件许可信息。

2. 项目的启动文件介绍

数据捕获启动

  • 主文件: 1_mmWave_data_capture/capture.py
  • 用法: 使用前需先通过毫米波雷达配套的mmWave Studio软件加载DataCaptureDemo_1843new.lua以开始数据流传输。随后,在Ubuntu环境下运行此脚本进行数据捕获。例如,要捕获5分钟的数据,命令为:
    python capture.py 5
    

点云生成

  • 主文件: 2_point_cloud_generation/pc_generation.py
  • 用法: 将二进制雷达数据转换为点云。例如,处理名为test.bin的文件中的10帧数据,命令为:
    python pc_generation.py test.bin 10
    

模型训练与预测

  • 训练: 3_deep_model/train_model.py
  • 预测: 3_deep_model/infer_model.py
  • 用法: 在进行模型训练或预测之前,确保已将从初步步骤中生成的smpl_f.pklsmpl_m.pkl 移至当前工作目录。执行训练:
    python train_model.py
    
    执行预测:
    python infer_model.py
    

3. 项目的配置文件介绍

mmMesh项目中的配置主要体现在运行各个阶段所涉及的参数设定上,而非传统的单一配置文件形式。具体配置分布在不同的脚本内部,例如:

  • 数据捕获: 可能需要调整Lua脚本(DataCaptureDemo_1843new.lua)来设置雷达的工作模式。
  • 点云生成: 2_point_cloud_generation/configuration.py 或是在调用pc_generation.py时通过参数指定相关设置。
  • 深度模型: 配置主要在训练和数据处理脚本中硬编码,比如网络超参数、数据路径等,可根据需求修改脚本内的对应变量。

请注意,虽然没有明确的外部配置文件,但在实际操作中,开发者需根据不同的环境和实验要求,在相应的代码文件内进行适当的配置调整。

mmMesh mmMesh 项目地址: https://gitcode.com/gh_mirrors/mm/mmMesh

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明俪钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值