R2R 项目使用教程
R2R 项目地址: https://gitcode.com/gh_mirrors/r2/R2R
1. 项目介绍
R2R(RAG to Riches)是一个全方位的解决方案,用于构建、扩展和部署最先进的检索增强生成(Retrieval-Augmented Generation, RAG)应用程序。它填补了从实验到部署RAG应用程序之间的空白,提供了一个完整的平台,帮助用户快速构建和启动可扩展的RAG解决方案。R2R围绕一个容器化的RESTful API构建,支持多模态数据摄取、混合搜索、GraphRAG功能、用户管理和可观测性特性。
关键特性
- 多模态数据摄取:支持解析
txt
、pdf
、json
、png
、mp3
等多种格式。 - 混合搜索:结合语义和关键词搜索,通过互惠排名融合增强相关性。
- Graph RAG:自动提取关系并构建知识图谱。
- 应用管理:高效管理文档和用户,提供完整的身份验证。
- 可观测性:观察和分析RAG引擎的性能。
- 可配置性:使用直观的配置文件配置应用程序。
- 仪表盘:一个开源的 React+Next.js 应用,可选的身份验证,通过GUI与R2R交互。
2. 项目快速启动
安装
推荐使用Docker或pip进行快速安装。
使用Docker安装
# 设置OpenAI API密钥
export OPENAI_API_KEY=sk-
# 启动R2R
r2r serve --docker --full
使用pip安装
# 安装R2R
pip install r2r
# 设置OpenAI API密钥
export OPENAI_API_KEY=sk-
# 启动R2R
r2r --config-name=default serve
快速启动
R2R提供了一个快速入门指南,帮助用户快速了解其核心功能。以下是一个简单的示例,展示如何使用R2R进行文档搜索。
from r2r import R2RClient
# 初始化客户端
client = R2RClient(api_key="your_api_key")
# 上传文档
client.upload_document("example.pdf")
# 搜索文档
results = client.search("关键词")
# 打印结果
for result in results:
print(result)
3. 应用案例和最佳实践
应用案例
- 智能客服系统:利用R2R的多模态数据摄取和混合搜索功能,构建一个智能客服系统,能够快速响应用户查询。
- 知识图谱构建:通过GraphRAG功能,自动提取文档中的关系并构建知识图谱,用于企业知识管理和决策支持。
最佳实践
- 数据预处理:在上传文档之前,进行必要的数据预处理,如文本清洗、格式转换等,以提高搜索的准确性。
- 性能优化:根据实际需求,调整R2R的配置参数,如搜索深度、结果数量等,以优化系统性能。
4. 典型生态项目
相关项目
- Elasticsearch:R2R在某些方面类似于Elasticsearch,但专注于RAG应用,提供更丰富的功能和更简便的部署方式。
- Unstructured.io:R2R默认使用Unstructured.io作为数据摄取提供者,支持多种格式的文档解析。
集成项目
- React+Next.js:R2R提供了一个开源的React+Next.js应用,用于通过GUI与R2R交互,方便用户进行文档管理和搜索操作。
通过以上内容,您可以快速了解并开始使用R2R项目。希望本教程对您有所帮助!