PAC3高级角色定制指南

PAC3高级角色定制指南

pac3advanced avatar customization for garrysmod项目地址:https://gitcode.com/gh_mirrors/pa/pac3


项目介绍

PAC3(Player Animation and Customization v3)是一款专为《盖瑞模组》(Garry's Mod)设计的开源插件,它赋予玩家前所未有的能力来自定义他们的游戏角色外观。通过PAC3,你可以简单地在角色头上放置一顶帽子,或者复杂到创造出全新的玩家模型。这项工具同样适用于车辆和场景道具,使你能够轻易地制作出自定义武器和NPC。无论在哪一个服务器上,只要你和其他人都装载了相同的资源,你的个性化装扮就能被所有人看见。PAC3支持Lua脚本语言,采用GPL-3.0许可证发布,鼓励社区贡献和发展。

项目快速启动

安装步骤

  1. 获取PAC3: 首先,访问PAC3的GitHub仓库或直接通过Steam Workshop安装。

  2. 配置Garry's Mod服务器

    • 如果是服务器端安装,确保将PAC3添加到您的服务器并正确配置。
    • 对于客户端,只需订阅Workshop上的项目即可。
  3. 启用高级模式: 进入游戏选项,找到PAC3设置,勾选“启用高级模式”以解锁全部功能。

  4. 基本示例: 在lua文件中创建或编辑pac文件,例如,在garrysmod\lua\pac3目录下创建一个简单的pac文件:

    Pac.Create("basic_hat", {
        Players = Player.All,
        Entity = Player.Local,
        Components = {
            { Class = "pac_component_model", Model = "models/hat.mdl", Attachment = "eyes" }
        }
    })
    

    将上述代码保存为.pac文件,并在游戏中加载此自定义配置。

应用案例和最佳实践

  • 角色个性化:利用PAC3,玩家可以创造独一无二的角色外观,从装备各种装备到复杂的动画效果。
  • 特殊效果:实现如烟雾、火焰等动态特效,增强角色表现力。
  • 定制化武器与NPC:开发者可轻松定制武器外观和NPC行为,为游戏增添独特内容。

最佳实践

  • 细致规划你的角色设计,逐步增加元素避免过度复杂。
  • 利用社群资源和GitHub讨论区学习他人的经验和技巧。
  • 遵循社区的分享和反馈文化,贡献自己的创意或解决方法。

典型生态项目

PAC3作为核心工具,催生了许多围绕《盖瑞模组》的创意作品和社区。例如:

  • 社区模组整合:许多《盖瑞模模组》的大型模组都会集成PAC3,允许玩家对特定角色或物品进行深入定制。
  • 皮肤和模型共享平台:玩家在社区中分享自创的模型、纹理,这些资源常常被用于PAC3配置中。
  • 教育和教程:在线教程、工作坊和论坛帖子专注于教授如何高效使用PAC3,特别是在Lua脚本方面的知识。

通过这些生态项目,PAC3不仅丰富了《盖瑞模组》的游戏体验,也促进了Modding社区内的技术和艺术交流。


请注意,实际操作时要确保遵循最新的官方文档或更新日志,因为技术细节可能会随时间而变化。

pac3advanced avatar customization for garrysmod项目地址:https://gitcode.com/gh_mirrors/pa/pac3

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟振优Harvester

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值