百万歌曲数据集:音乐研究的新纪元

百万歌曲数据集:音乐研究的新纪元

MSongsDB Code for the Million Song Dataset, the dataset contains metadata and audio analysis for a million tracks, a collaboration between The Echo Nest and LabROSA. See website for details. MSongsDB 项目地址: https://gitcode.com/gh_mirrors/ms/MSongsDB

项目介绍

百万歌曲数据集(Million Song Dataset) 是一个由哥伦比亚大学LabROSA实验室与The Echo Nest合作开发的大型音乐数据集。该数据集包含了百万首歌曲的分析数据和元数据,旨在为研究人员提供一个庞大的数据资源,以促进能够扩展到商业规模的音乐分析算法的发展。数据集的构建得到了美国国家科学基金会(NSF)的部分资助,确保了其高质量和广泛的应用前景。

项目技术分析

百万歌曲数据集不仅包含了歌曲的基本信息,如艺术家、专辑、发行年份等,还涵盖了丰富的音频分析数据,如节奏、音调、音高等。这些数据是通过The Echo Nest的先进音频分析技术生成的,确保了数据的准确性和可靠性。此外,数据集还整合了SecondHandSongs和musiXmatch的数据,分别提供了歌曲的翻唱版本和歌词信息,进一步丰富了研究的可能性。

数据集的代码部分采用了GNU公共许可证,这意味着研究人员可以自由地使用、修改和分发代码,极大地促进了开源社区的协作与创新。

项目及技术应用场景

百万歌曲数据集的应用场景非常广泛,涵盖了音乐信息检索、音乐推荐系统、音乐情感分析、音乐风格分类等多个领域。例如:

  • 音乐推荐系统:利用数据集中的用户行为数据和歌曲特征,构建个性化的音乐推荐算法。
  • 音乐情感分析:通过分析歌曲的音频特征和歌词内容,研究音乐与情感之间的关联。
  • 音乐风格分类:基于歌曲的音频特征和元数据,开发自动化的音乐风格分类系统。

项目特点

  1. 数据规模庞大:包含百万首歌曲的详细数据,为大规模数据分析提供了坚实的基础。
  2. 数据类型丰富:不仅包含歌曲的元数据,还有音频分析数据、歌词数据等,满足多方面的研究需求。
  3. 开源与协作:代码采用GNU公共许可证,鼓励社区的参与和贡献,促进技术的快速发展。
  4. 高质量数据:由The Echo Nest和LabROSA联合开发,确保数据的准确性和可靠性。

结语

百万歌曲数据集为音乐研究领域带来了前所未有的机遇。无论你是音乐爱好者、研究人员还是开发者,这个数据集都将为你提供丰富的资源和无限的可能性。立即访问项目官网,开始你的音乐探索之旅吧!


如果你有任何问题或建议,欢迎加入Google Groups讨论组,与全球的研究者们一起交流和分享。

MSongsDB Code for the Million Song Dataset, the dataset contains metadata and audio analysis for a million tracks, a collaboration between The Echo Nest and LabROSA. See website for details. MSongsDB 项目地址: https://gitcode.com/gh_mirrors/ms/MSongsDB

Spotify歌曲流派数据集 背景描述 本数据集包含125种不同音乐流派的Spotify歌曲数据。 每首歌曲都有一些与之相关的音频特征,数据以 CSV 格式存储。 数据说明 字段 说明 track_id 歌曲的Spotify ID artists 演唱这首歌曲的艺术家名字。如果有多个艺术家,他们之间用;隔开 album_name 歌曲出现的专辑名称 track_name 歌曲名称 popularity 歌曲的流行度在0到100之间,100最流行 duration_ms 歌曲长度,单位毫秒 explicit 歌曲是否包含露骨歌词(true表示包含,false表示不包含或不确定) danceability 舞曲度,描述歌曲适合跳舞的程度,基于节奏、速度、强弱等音乐要素综合得出。0.0最不适合跳舞,1.0最适合跳舞。 energy 能量,从0.0到1.0表示音乐的强度和活力。高能量的音乐通常感觉快速、响亮、嘈杂。例如死亡金属高能量,巴赫前奏曲能量低。 key 歌曲所用音阶。整数对应标准音名记号,例如0=C,1=C♯/D♭,2=D等。如果检测不到音阶则为-1。 loudness 歌曲整体的响度,单位分贝(dB)。 mode 模式,表示歌曲使用长调(1)或短调(0)。 speechiness 语音度,检测歌曲中言语成分的存在。越专注语音(例如脱口秀、有声书、诗歌朗诵),值越接近1.0。大于0.66表示可能全都是言语。0.33到0.66之间既可能包含音乐也可能包含言语,例如说唱音乐。小于0.33多为音乐及其他非言语音轨。 acousticness 音乐是否为纯音乐的可信度,从0.0到1.0。1.0代表高可信度该音轨为纯音乐。 instrumentalness 预测音轨是否不包含人声。哼唱声被视为器乐。说唱或朗诵被明确视为人声。值越接近1.0,包含无人声内容的可能性越大。 liveness 检测音轨是否为现场录音。较高的liveness值表示较大可能性该音轨为现场演奏。高于0.8强烈表示为现场。 valence 从0.0到1.0描述音轨传达的音乐情感正面度。正面度高的音乐感觉更正面(如快乐、欢快、欣喜),负面度低的更负面(如悲伤、沮丧、愤怒)。 tempo 估计的歌曲总体节奏,单位每分钟节拍数(BPM)。音乐术语中,节奏直接来自平均拍长。 time_signature 估计的拍号时间符号。时间符号表示每小节中拍号,范围从3到7,对应3/4到7/4拍。 track_genre 歌曲所属的流派 问题描述 基于用户输入或偏好构建推荐系统 基于音频特征和可用类型的进行分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟振优Harvester

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值