Facial-Expression-Recognition 项目使用教程
1. 项目目录结构及介绍
Facial-Expression-Recognition/
├── .gitignore
├── LICENSE
├── README.md
├── cnn_major.py
├── cnn_major_shallow.py
├── model_2layer_2_2_pool.h5
├── model_2layer_2_2_pool.json
├── model_4layer_2_2_pool.h5
├── model_4layer_2_2_pool.json
└── ...
- .gitignore: 用于指定Git版本控制系统忽略的文件和目录。
- LICENSE: 项目的开源许可证文件,本项目使用MIT许可证。
- README.md: 项目的介绍文件,包含项目的基本信息、使用方法和依赖项等。
- cnn_major.py: 深度卷积神经网络(CNN)模型的主要代码文件。
- cnn_major_shallow.py: 浅层卷积神经网络(CNN)模型的代码文件。
- model_2layer_2_2_pool.h5: 2层CNN模型的训练权重文件。
- model_2layer_2_2_pool.json: 2层CNN模型的结构文件。
- model_4layer_2_2_pool.h5: 4层CNN模型的训练权重文件。
- model_4layer_2_2_pool.json: 4层CNN模型的结构文件。
2. 项目的启动文件介绍
cnn_major.py
cnn_major.py
是该项目的主要启动文件,用于运行深度卷积神经网络(CNN)模型进行面部表情识别。
主要功能:
- 加载预训练的模型权重。
- 对输入的面部图像进行分类,识别出对应的情感类别。
使用方法:
- 确保已经下载并解压了FER2013数据集到项目的主目录。
- 打开终端并导航到项目文件夹。
- 运行以下命令启动模型:
python cnn_major.py
cnn_major_shallow.py
cnn_major_shallow.py
是浅层卷积神经网络(CNN)模型的启动文件,用于运行浅层CNN模型进行面部表情识别。
主要功能:
- 加载预训练的浅层CNN模型权重。
- 对输入的面部图像进行分类,识别出对应的情感类别。
使用方法:
- 确保已经下载并解压了FER2013数据集到项目的主目录。
- 打开终端并导航到项目文件夹。
- 运行以下命令启动模型:
python cnn_major_shallow.py
3. 项目的配置文件介绍
model_2layer_2_2_pool.h5 和 model_4layer_2_2_pool.h5
这两个文件分别是2层和4层CNN模型的训练权重文件。这些文件包含了模型的参数,用于在推理阶段加载模型并进行预测。
model_2layer_2_2_pool.json 和 model_4layer_2_2_pool.json
这两个文件分别是2层和4层CNN模型的结构文件。这些文件定义了模型的架构,包括卷积层、池化层、全连接层等。
使用方法:
- 在
cnn_major.py
和cnn_major_shallow.py
中,模型结构和权重文件会被自动加载。如果需要重新训练模型,可以将is_model_saved
变量设置为False
,然后运行相应的脚本。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考