Facial-Expression-Recognition 项目使用教程

Facial-Expression-Recognition 项目使用教程

Facial-Expression-Recognition Classify each facial image into one of the seven facial emotion categories considered using CNN based on https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge 项目地址: https://gitcode.com/gh_mirrors/facial/Facial-Expression-Recognition

1. 项目目录结构及介绍

Facial-Expression-Recognition/
├── .gitignore
├── LICENSE
├── README.md
├── cnn_major.py
├── cnn_major_shallow.py
├── model_2layer_2_2_pool.h5
├── model_2layer_2_2_pool.json
├── model_4layer_2_2_pool.h5
├── model_4layer_2_2_pool.json
└── ...
  • .gitignore: 用于指定Git版本控制系统忽略的文件和目录。
  • LICENSE: 项目的开源许可证文件,本项目使用MIT许可证。
  • README.md: 项目的介绍文件,包含项目的基本信息、使用方法和依赖项等。
  • cnn_major.py: 深度卷积神经网络(CNN)模型的主要代码文件。
  • cnn_major_shallow.py: 浅层卷积神经网络(CNN)模型的代码文件。
  • model_2layer_2_2_pool.h5: 2层CNN模型的训练权重文件。
  • model_2layer_2_2_pool.json: 2层CNN模型的结构文件。
  • model_4layer_2_2_pool.h5: 4层CNN模型的训练权重文件。
  • model_4layer_2_2_pool.json: 4层CNN模型的结构文件。

2. 项目的启动文件介绍

cnn_major.py

cnn_major.py 是该项目的主要启动文件,用于运行深度卷积神经网络(CNN)模型进行面部表情识别。

主要功能:
  • 加载预训练的模型权重。
  • 对输入的面部图像进行分类,识别出对应的情感类别。
使用方法:
  1. 确保已经下载并解压了FER2013数据集到项目的主目录。
  2. 打开终端并导航到项目文件夹。
  3. 运行以下命令启动模型:
    python cnn_major.py
    

cnn_major_shallow.py

cnn_major_shallow.py 是浅层卷积神经网络(CNN)模型的启动文件,用于运行浅层CNN模型进行面部表情识别。

主要功能:
  • 加载预训练的浅层CNN模型权重。
  • 对输入的面部图像进行分类,识别出对应的情感类别。
使用方法:
  1. 确保已经下载并解压了FER2013数据集到项目的主目录。
  2. 打开终端并导航到项目文件夹。
  3. 运行以下命令启动模型:
    python cnn_major_shallow.py
    

3. 项目的配置文件介绍

model_2layer_2_2_pool.h5 和 model_4layer_2_2_pool.h5

这两个文件分别是2层和4层CNN模型的训练权重文件。这些文件包含了模型的参数,用于在推理阶段加载模型并进行预测。

model_2layer_2_2_pool.json 和 model_4layer_2_2_pool.json

这两个文件分别是2层和4层CNN模型的结构文件。这些文件定义了模型的架构,包括卷积层、池化层、全连接层等。

使用方法:
  • cnn_major.pycnn_major_shallow.py 中,模型结构和权重文件会被自动加载。如果需要重新训练模型,可以将 is_model_saved 变量设置为 False,然后运行相应的脚本。

Facial-Expression-Recognition Classify each facial image into one of the seven facial emotion categories considered using CNN based on https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge 项目地址: https://gitcode.com/gh_mirrors/facial/Facial-Expression-Recognition

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪昱锨Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值