Hypersim:室内场景理解的高保真合成数据集

Hypersim:室内场景理解的高保真合成数据集

ml-hypersim Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding ml-hypersim 项目地址: https://gitcode.com/gh_mirrors/ml/ml-hypersim

项目介绍

Hypersim是由苹果公司推出的一款专注于室内场景理解的高质量合成数据集。它解决了真实图像中难以获取像素级地面真相标签的问题,通过利用专业艺术家创作的大型合成场景库,生成了总计77,400张涉及461个室内场景的图片,每一张都附带详尽的像素级标签和对应的精确几何信息。此数据集特色包括:

  • 使用公开可获得的3D资产。
  • 提供每个场景的完整场景几何、材质信息和光照信息。
  • 每张图像都有密集的像素级语义实例分割和完整的相机信息。
  • 分解每张图像为漫反射、扩散照明和非漫反射残差项,捕捉视角依赖的光照效果。

Hypersim遵循Creative Commons Attribution-ShareAlike 3.0 Unported License发布,并有一篇相应的研究论文在国际计算机视觉大会(ICCV) 2021上发表,用于指导引用。

项目快速启动

要快速开始使用Hypersim数据集,你需要下载提供的脚本并执行以下步骤(注意,对于Windows用户,需自适应修改以支持curlunzip命令):

python code/python/tools/dataset_download_images.py --downloads_dir /your/download/path --decompress_dir /your/decompressed/path

由于数据集大小约为1.9TB,已被切分成若干1GB至20GB之间的ZIP文件。该脚本包含了访问这些文件的URL。若要获取完整场景的地面真相三角网格,则需单独购买原始资产文件。

应用案例和最佳实践

Hypersim特别适合于室内场景理解的研究和开发,如语义分割、对象检测、重建和视图合成等任务。最佳实践建议从仔细分析数据集结构开始,理解其详细的目录布局和文件格式,以便高效地集成到机器学习模型训练流程中。例如,可以利用其提供的多维度图像数据(如HDR图像、深度图、法线图等)进行深度学习模型的训练,实现室内环境的精准理解和建模。

典型生态项目

虽然Hypersim本身是独立的数据集,但它的引入激发了一系列与室内场景渲染、计算机视觉算法开发相关的研究项目和应用。开发者和研究人员可以将其应用于增强现实、虚拟现实、自动驾驶中的室内导航系统以及智能家居的自动化理解领域。社区中可能会出现基于Hypersim构建的工具包和框架,用于简化数据的预处理、标注验证和模型评估,尽管具体实例需通过进一步探索相关论坛和研究文献来发现。


以上是根据给定的开源项目链接https://github.com/apple/ml-hypersim.git整理的基本教程概览,实际使用时应详细阅读项目文档和论文,确保正确应用此数据集。

ml-hypersim Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding ml-hypersim 项目地址: https://gitcode.com/gh_mirrors/ml/ml-hypersim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔岱怀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值