推荐使用 kmedoids:高效且灵活的Python实现K-中位数聚类算法
去发现同类优质开源项目:https://gitcode.com/
项目介绍
kmedoids 是一个用Python实现的K-中位数(k-medoids)聚类算法的库。这个库旨在提供一种简单易用的方式来对数据进行划分,以找出最具代表性的样本点作为各个聚类的中心。它基于Scikit-Learn库的pairwise_distances
函数,支持多种距离度量方法,为你的数据分析项目提供了更多的灵活性。
项目技术分析
K-中位数算法是一种与K-均值相似但更健壮的聚类方法。不同于K-均值选择质心作为聚类中心,K-中位数选择实际的样本点作为中位数。这意味着它对于异常值和非球形分布的数据集有更强的鲁棒性。在kmedoids库中,通过计算所有点之间的距离矩阵,并迭代调整中位数的位置,最终得到稳定且具代表性的聚类结果。
使用方法非常直观,你可以直接导入kmedoids
并调用kMedoids
函数,传入距离矩阵和所需的聚类数量即可。例如,以下代码演示了如何对3个二维点进行2类划分:
from sklearn.metrics.pairwise import pairwise_distances
import numpy as np
import kmedoids
data = np.array([[1,1], [2,2], [10,10]])
D = pairwise_distances(data, metric='euclidean')
M, C = kmedoids.kMedoids(D, 2)
print('medoids:')
for point_idx in M:
print( data[point_idx] )
print('clustering result:')
for label in C:
for point_idx in C[label]:
print('label {0}: {1}'.format(label, data[point_idx]))
项目及技术应用场景
kmedoids库适用于各种数据挖掘和机器学习任务,特别是在以下场景中表现优秀:
- 数据分类:当你的数据集具有不规则形状或存在异常值时,K-中位数可能比K-均值更适用。
- 图像分割:在图像处理领域,它可以用来将像素分组到具有相似特征的区域。
- 社交网络分析:在朋友圈、社区等网络结构分析中,可以识别出核心节点。
- 文本聚类:在新闻、文档分组时,寻找代表性的文本样本。
项目特点
- 简单易用:API设计简洁,只需几行代码即可完成聚类任务。
- 高度可定制:支持自定义距离度量,适应不同类型的特征和需求。
- 鲁棒性:对抗异常值和非凸形数据集效果良好。
- 引用可靠:基于已发布的研究论文,保证算法的正确性和有效性。
如果你正在寻找一个强大且灵活的K-中位数聚类工具,那么kmedoids无疑是一个值得尝试的选择。立即加入,让kmedoids助力你的数据分析工作更上一层楼!
去发现同类优质开源项目:https://gitcode.com/