python的K-MEDOIDS聚类方法

K-Medoids(也称为PAM,Partitioning Around Medoids)是一种聚类算法,其中每个聚类的中心点(称为medoid)是聚类内的一个实际数据点,而不是像K-Means那样是数据点的平均值。在Python中,没有内置的K-Medoids实现,但我们可以使用scikit-learnKMeans算法(通过init='k-medoids'参数,尽管这在较新的版本中可能已被移除或不再支持)或者使用第三方库如pyclustering

以下是一个使用pyclustering库进行K-Medoids聚类的示例:

首先,你需要安装pyclustering库(如果还没有安装的话):

from pyclustering.cluster.kmedoids import kmedoids  
from pyclustering.samples.definitions import FCPS_SAMPLES  
from pyclustering.utils import read_sample  
  
# 加载数据集(这里我们使用内置的FCPS_SAMPLES中的一个数据集)  
sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)  
  
# 初始化K-Medoids聚类算法,并设置聚类的数量  
kmedoids_instance = kmedoids(sample, 2)  # 假设我们想要将数据分为2个聚类  
  
# 执行聚类  
kmedoids_ins
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孺子牛 for world

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值