K-Medoids
(也称为PAM,Partitioning Around Medoids)是一种聚类算法,其中每个聚类的中心点(称为medoid)是聚类内的一个实际数据点,而不是像K-Means那样是数据点的平均值。在Python中,没有内置的K-Medoids
实现,但我们可以使用scikit-learn
的KMeans
算法(通过init='k-medoids'
参数,尽管这在较新的版本中可能已被移除或不再支持)或者使用第三方库如pyclustering
。
以下是一个使用pyclustering
库进行K-Medoids聚类的示例:
首先,你需要安装pyclustering
库(如果还没有安装的话):
from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.samples.definitions import FCPS_SAMPLES
from pyclustering.utils import read_sample
# 加载数据集(这里我们使用内置的FCPS_SAMPLES中的一个数据集)
sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
# 初始化K-Medoids聚类算法,并设置聚类的数量
kmedoids_instance = kmedoids(sample, 2) # 假设我们想要将数据分为2个聚类
# 执行聚类
kmedoids_ins