PDE Surrogate 开源项目教程

PDE Surrogate 开源项目教程

pde-surrogatePhysics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data项目地址:https://gitcode.com/gh_mirrors/pd/pde-surrogate

1. 项目的目录结构及介绍

PDE Surrogate 项目的目录结构如下:

pde-surrogate/
├── data/
│   ├── processed/
│   └── raw/
├── docs/
├── notebooks/
├── pde_surrogate/
│   ├── models/
│   ├── utils/
│   └── __init__.py
├── scripts/
├── tests/
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py

目录介绍

  • data/: 存放数据文件,包括处理后的数据 (processed/) 和原始数据 (raw/)。
  • docs/: 存放项目文档。
  • notebooks/: 存放 Jupyter 笔记本,用于数据分析和实验。
  • pde_surrogate/: 项目的主要代码目录,包含模型 (models/) 和工具函数 (utils/)。
  • scripts/: 存放脚本文件,用于数据处理和模型训练等。
  • tests/: 存放测试代码。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目许可证。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖包列表。
  • setup.py: 项目安装脚本。

2. 项目的启动文件介绍

项目的启动文件主要是 setup.pyREADME.md

setup.py

setup.py 文件用于项目的安装和打包。它包含了项目的元数据和依赖信息,可以通过以下命令安装项目:

pip install .

README.md

README.md 文件是项目的说明文档,包含了项目的基本信息、安装指南、使用方法等。用户在克隆项目后,应首先阅读该文件以了解项目的基本情况。

3. 项目的配置文件介绍

项目的配置文件主要是 requirements.txt

requirements.txt

requirements.txt 文件列出了项目运行所需的依赖包及其版本。用户可以通过以下命令安装所有依赖:

pip install -r requirements.txt

该文件确保了项目在不同环境中的一致性和可复现性。

pde-surrogatePhysics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data项目地址:https://gitcode.com/gh_mirrors/pd/pde-surrogate

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/8947b2b6b560 八数码问题,即滑动拼图游戏,是计算机科学中一个经典的图灵完全问题,涉及搜索算法、状态空间复杂度和最优路径查找等核心概念。本项目利用Visual Studio 2017集成开发环境和MFC(Microsoft Foundation Classes)库,实现了八数码问题的求解,并提供了A*算法、全局择优搜索和宽度优先搜索三种搜索算法。以下将对相关知识点进行详细说明。 MFC是微软为Windows应用程序开发提供的一套基于C++的类库,能够简化Windows编程工作,方便开发者构建用户界面、处理系统消息及进行数据存储等。在本项目中,MFC用于创建图形用户界面(GUI),展示拼图状态并接收用户输入,为八数码问题的实现提供了友好的交互平台。 A*算法是一种启发式搜索算法,结合了最佳优先搜索(如Dijkstra算法)和贪婪最佳优先搜索,通过引入启发式函数来估计从当前节点到目标节点的最短路径,从而有效减少搜索空间,提高搜索效率。在八数码问题中,常用的启发式函数是曼哈顿距离或汉明距离,它们能够较好地评估每个状态与目标状态的距离。 全局择优搜索,也称为全局最佳优先搜索,是一种优化策略。在搜索过程中,它始终选择当前最有希望的状态进行扩展。在八数码问题中,这意味着每次选取具有最低评估值(通常是启发式函数值加上已走步数)的状态进行下一步操作。 宽度优先搜索(BFS)是一种非启发式搜索策略,按照节点的层次进行扩展,优先考虑离起始状态近的节点。虽然BFS不直接考虑目标距离,但其能够保证找到的路径是最短的,对于八数码问题的解决也有重要意义,尤其是在所有状态距离目标状态的启发式值相同时。 在实现过程中,加入了计时功能,用于对比不同算法的运行效率,帮助理解在实际应用中如何根据问题特性和资源限制选择合适的算法。同时,显示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郦岚彬Steward

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值