自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

山里娃的博客

记录学习

  • 博客(123)
  • 资源 (15)
  • 收藏
  • 关注

原创 深度学习求解微分方程系列五:PINN求解Navier-Stokes方程正逆问题

下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的二维Navier-Stokes方程。深度学习求解微分方程系列三:PINN求解burger方程逆问题深度学习求解微分方程系列四:基于自适应激活函数PINN求解burger方程逆问题神经网络作

2022-11-13 17:29:33 6751 43

原创 深度学习求解微分方程系列二:PINN求解burger方程正问题

下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的一维burger方程。

2022-11-11 22:48:14 2843 4

原创 深度学习求解微分方程系列四:一种基于自适应激活函数的PINN求解方法—burger方程逆问题

下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的一维burger方程逆问题。

2022-11-10 07:58:07 5707 22

原创 PINN深度学习求解微分方程系列三:求解burger方程逆问题

近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN),能够用于解决与偏微分方程 相关的各种问题,该文章通过基于自适应激活函数的PINN对Burger方程进行快速求解。

2022-11-04 23:04:01 9104 47

原创 PINN深度学习求解微分方程系列一:求解框架

下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch框架实现求解一维Poisson方程。1.PINN简介神经网络作为一种强大的信息处理工具在计算机视觉、生物医学、 油气工程领域得到广泛应用, 引发多领域技术变革.。深度学习网络具有非常强的学习能力, 不仅能发现物理规律, 还能求解偏微分方程.。近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN)是一种科学机器在传统数值领域的应用方法,能够用于解决与偏微分方程 (PDE)

2022-11-02 22:01:14 16662 70

原创 PINN物理信息驱动的深度学习方向重要进展与趋势

将物理先验知识嵌入深度学习模型和算法中,可提高学习效率和能力,目前这个方向有哪些重要进展和趋势?

2022-06-16 11:15:12 2996 1

原创 PINN物理驱动的深度学习方法入门到详解

物理驱动的深度学习方法入门

2022-06-16 10:23:53 10037 3

原创 PINN物理信息驱动的深度学习方法与不确定性量化

内嵌物理知识深度学习方法(PINN)与不确定性量化论文

2022-06-01 15:18:31 2107

原创 PINN内嵌物理知识神经网络投稿期刊总结

内嵌物理知识神经网络投稿期刊总结

2021-12-23 08:51:17 4728

原创 PINN内嵌物理知识神经网络入门及文献总结

内嵌物理知识深度学习方法(PINN)已经成功用于解决各类科学计算问题,其本质是将物理先验知识嵌入神经网络训练中,将一个求解PDE的问题转化为一个优化问题。这篇博客主要记录PINN相关论文

2021-09-03 10:00:28 61365 58

原创 KL散度公式详解

目录文章目录Jensen's inequality讲解KL散度(又名relative entropy)mutual informationJensen’s inequality$f(\int\mathrm{x}p(x)dx)\leqslant\int\mathbb{f}(x)p(x)dx$,根据$f(E(x))\leqslant\mathbb{E}(f(x))$Jensen’s inequ...

2020-09-01 21:34:49 7207

原创 对抗样本入门详解

对抗样本基本原理

2020-09-01 21:32:54 10872 2

原创 元学习入门详解(MAML算法及Reptile算法复现)

元学习以及常用的元学习算法介绍

2020-08-26 14:25:40 4931 3

原创 物理驱动深度学习方法总结

PINN综述Blog介绍:内嵌物理知识神经网络 (Physics Informed Neural Network,简称PINN) 是一种科学机器在传统数值领域的应用方法,特别是用于解决与偏微分方程 (PDE) 相关的各种问题,包括方程求解、参数反演、模型发现、控制与优化等。综述论文基于神经网络的偏微分方程求解方法研究综述,中文综述。

2023-11-17 08:38:36 1519

原创 一种基于物理信息极限学习机的PDE求解方法

近年来,物理信息驱动的深度学习方法用于科学计算问题受到了越来越多的关注,其中,physic informed neural network(PINN)在求解微分方程(PDE)正逆问题上展现出巨大的优势,但是并不适用于某些需要实时响应的应用。由此,下面将介绍一种基于物理信息极限学习机的PDE求解方法,用于线性微分方程的快速求解,能实现近实时高精度求解(秒级求解)。首先介绍PINN及极限学习机基本方法,其次介绍基于物理信息的极限学习方法,随后介绍求解问题与背景,最后展示基于Pytorch实现的算例结果。

2022-12-02 15:07:32 2510 8

原创 【Paraview教程】第一章安装与基础介绍

ParaView基本的交互式可视化功能,主要包括数据加载,数据处理,参数调整和数据交互等功能。如切割,剪裁,轮廓,探测都能通过paraview实现。

2022-11-27 09:10:09 12801 2

原创 scipy求解非线性多目标问题代码实现

非线性多目标优化问题scipy实现

2022-10-30 22:55:27 772

原创 PINN期刊推荐总结

收录文章特点收录文章:收录文章收录文章。

2022-10-28 11:15:28 1754

原创 Reinforcement learning-强化学习基础

强化学习的关键要素有:environment,reward,action 和 state。有了这些要素我们就能建立一个强化学习模型。强化学习解决的问题是,针对一个具体问题得到一个最优的policy,使得在该策略下获得的reward最大。所谓的policy其实就是一系列action,也就是sequential data。

2022-10-28 11:07:46 771

原创 稳健回归-鲁棒回归

稳健回归(robust regression)是统计学稳健估计中的一种方法,其主要思路是将对异常值十分敏感的经典最小二乘回归中的目标函数进行修改。经典最小二乘回归以使误差平方和达到最小为其目标函数

2022-10-28 11:02:46 2536

原创 Extended Physics-InformedNeural Networks (XPINNs)

cPINN是通过区域分解,每个区域使用小的网络进行训练,使得求解时不同区域能够并行计算。

2022-10-28 11:00:47 1053

原创 Solving Inverse Problems With Deep Neural Networks

本篇论文对深度神经网络解决欠定(underdetermined)的逆问题的鲁棒性(robustness)进行了研究。研究内容包括用Guassian measurement的压感(compressed sening)以及通过Founier and Radon measurement的图像恢复

2022-10-28 10:57:29 1416

原创 Systems biology informed deep learning for inferring parameters and hidden dynamics

利用网络训练拟合模型参数,提出了system-biology -informed 神经算法,能够可靠而准确的推断hidden dynamics,能够用很少的观测数据对dynamics和模型参数进行推断。

2022-10-28 10:55:23 409

原创 PhyGeoNet一种可用于不规则区域的物理信息极限学习机

主要就是解决了CNN求解域为非规则形状这样问题,同时将物理信息嵌入CNN中,实现了物理数据双驱动。

2022-10-28 10:50:36 1330

原创 重型机床热误差补偿温度敏感测点的识别与优化选择

传感器测点优化

2022-10-28 10:30:33 1187

原创 PDEBench-AI求解微分方程新基准

近年来,物理驱动深度学习方法非常热门,特别是在求解逆问题上有独特的优势。在该领域,很多研究者在不同数据集上已经提出了性能非常好的求解算法。但都在各自数据集和问题上进行测试比较,发展类似图像benchmark如CIFAR10等公开数据集,比较迫切。现在,在AI求微分方程领域制作了一个PDEBech,可用于基准对比。

2022-10-28 09:34:31 2191 1

原创 物理信息驱动深度学习相关报告总结

物理信息驱动深度学习相关报告

2022-10-21 00:08:09 2059

原创 物理驱动深度学习(PINN)代码

物理驱动深度学习代码总结

2022-10-12 17:18:55 6576

原创 文献管理软件zotero|电脑和平板文献管理实现同步

文献管理软件zotero|电脑和平板文献管理实现同步

2022-09-26 22:03:41 4931 1

原创 Extended Physics-InformedNeural Networks论文详解

提出了更灵活分解域的XPINN方法,比cPINN区域分解更灵活,而且使用与所有方程。

2022-07-22 10:09:17 1653

原创 Self-supervised learning method to solve the inverse problem of Fokker-Planck Equation

Fokker-Planckequation方程在很多应用中是未知的,使得直接求解PDE这样的正问题充满挑战,通过监督学习从观测数据中恢复FPE亟待解决创新点提出FPE-net,直接将FPE-netterm作为网络权重,能够从观测数据中恢复FPEterm,而且对于数据降噪也有效果。...

2022-07-22 10:06:05 636

原创 物理信息驱动的深度学习相比于传统数值方法的潜在优势

**物理驱动的深度学习如神经网络方法相比于传统数值方法有哪些潜在优势**?

2022-06-16 09:56:01 4311 1

原创 通用生成函数(Universal Generating Function,UGF)投稿论文期刊总结

UGF期刊INTERNATIONAL JOURNAL OF SYSTEMS SCIENCEJournal of Mechanical Science and TechnologyIF=1.734letpub,年文章:504,国内收录:Develop a new method to reliability determination of a solar array mechanism via universal generating functionJournal of En

2022-06-08 08:57:17 721

转载 P问题、NP问题、NP完全问题和NP难问题

为了避免对这四个问题有一定理解基础的人看的很烦,个人简单理解的四个问题:P问题:有多项式时间算法,算得很快的问题。NP问题:算起来不确定快不快的问题,但是我们可以快速验证这个问题的解。NP-complete问题:属于NP问题,且属于NP-hard问题。NP-hard问题:比NP问题都要难的问题。详细说一下这四个问题:开始之前先说明两个概念:多项式,时间复杂度(知道的请自动跳过)。1.多项式: [公式] ,形如这种形式的就被称为x的最高位为n的多项式。2.时间复杂度:定义为随着问题规模的增大,

2022-05-23 10:42:40 1191

原创 latex缩进与对齐小技巧

全文修改对整篇文章修改\documentclass[a4paper,fleqn,tbtags]{article}局部对齐如果只需要对一行公式进行左对齐的话, 可使用\usepackage[fleqn]{amsmath}begin{flalign}your equation (1)\end{flalign}如果你说的是某一个公式有两三行, 你想把这几行做左对齐,用\begin{flalign}\begin{split}your equation (1)your equation

2022-03-29 22:29:07 6910

原创 科研论文实用工具汇总——阅读器小技巧

论文阅读管理器Mendeley优势收文献方面,Mendeley 拖 PDF 读元数据很方便。Mendeley 有个功能可以加鸡腿,数据库全文搜索非常快。界面简洁,颜色搭配舒服,这是我最喜欢的一个方面。快捷键论文跳页,Ctrl+Alt+G搜索关键字,Ctrl+F Ctrl+Shift+S福昕论文阅读器快捷键阅读器回到跳转前一个页面,Alt + left...

2022-03-25 16:16:44 1191

原创 内嵌物理知识神经网络(PINN)画图总结

整理了现有描述PINN图

2022-03-17 16:26:57 4359

原创 latex图表操作

表格表格重新编号\setcounter{table}{3} %编号为4 \begin{table}[!http] \begin{tabular}{cccccccc} xxx \end{tabular} \end{table}图重新编号 \begin{figure*}[!htbp] \centering \setcounter{figure}{3} %编号为4 \subfigure[case 1 with LHS]{ \includegraphics

2022-03-01 22:58:59 782

原创 mac latex与texstudio安装

mac latex与texstudio安装教程maclatex安装点击下载的MacTex.pkg文件开始安装MacTeX。连续点击“继续”“同意”“安装”等选项在弹出的界面输入Mac密码开始安装软件。安装快结束时可能会弹出提示需要命令行开发者工具,点击安装安装成功后打开启动台,发现成功安装5个软件,将其拖入同一个分类并将该分类命名为MacTeXtexstudio安装双击testudio-4.2.0使用安装好上面两个软件打开texstudio,就可以正常编辑了学习使用

2022-02-27 11:41:12 2584 4

原创 在Word中打开MathType时出现AutoExecCLS错误解决方案

在Word中打开MathType时出现AutoExecCLS错误解决方案

2022-02-24 17:03:09 1024

人工智能考题以及知识点总结

人工智能考题以及知识点总结

2021-12-01

计算机体系结构200道选择题

计算机体系结构200道选择题

2021-12-01

计算机体系结构第五版作业参考答案

计算机体系结构第五版每章节作业参考答案

2021-12-01

计算机体系结构每章节知识点总结

计算机体系结构每章节知识点总结.pdf

2021-12-01

计算机体系结构往年试题

近10年计算机体系结构往年试题

2021-12-01

计算机体系结构知识点汇总情况

计算机体系结构知识点汇总情况

2021-12-01

计算机体系结构知识点复习总结

计算机体系结构知识点复习总结

2021-12-01

高级体系结构课程要点总结

高级体系结构课程要点

2021-12-01

计算机体系结构量化方法课后习题

计算机体系结构量化方法课后习题

2021-12-01

计算机体系结构简答总结.pdf

计算机体系结构简答总结

2021-12-01

计算机体系结构(选择和简答题总结).pdf

总结计算机体系结构选择题以及简答题各一百道

2021-12-01

hp-VPINNs-master.zip

hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition 论文资源

2021-09-07

Pytorch_minst.ipynb

基于Pytorch的mnist的分类,包括了卷积神经网络的搭建并加以备注,主要是针对刚学习神经网络的人

2020-03-02

梯度下降算法分析的总结ppt

常见梯度下降算法latex版本的ppt,主要描述了梯度下降变体BGD,SGD,MBGD,梯度优化算法Momentum、Nesterov accelerated gradient、AdaGrad、RMSProp、Adadelta、Adam,以及如何去选择和使用他们

2020-03-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除