- 博客(123)
- 资源 (15)
- 收藏
- 关注
原创 深度学习求解微分方程系列五:PINN求解Navier-Stokes方程正逆问题
下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的二维Navier-Stokes方程。深度学习求解微分方程系列三:PINN求解burger方程逆问题深度学习求解微分方程系列四:基于自适应激活函数PINN求解burger方程逆问题神经网络作
2022-11-13 17:29:33 6751 43
原创 深度学习求解微分方程系列二:PINN求解burger方程正问题
下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的一维burger方程。
2022-11-11 22:48:14 2843 4
原创 深度学习求解微分方程系列四:一种基于自适应激活函数的PINN求解方法—burger方程逆问题
下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch的PINN求解框架实现求解含时间项的一维burger方程逆问题。
2022-11-10 07:58:07 5707 22
原创 PINN深度学习求解微分方程系列三:求解burger方程逆问题
近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN),能够用于解决与偏微分方程 相关的各种问题,该文章通过基于自适应激活函数的PINN对Burger方程进行快速求解。
2022-11-04 23:04:01 9104 47
原创 PINN深度学习求解微分方程系列一:求解框架
下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch框架实现求解一维Poisson方程。1.PINN简介神经网络作为一种强大的信息处理工具在计算机视觉、生物医学、 油气工程领域得到广泛应用, 引发多领域技术变革.。深度学习网络具有非常强的学习能力, 不仅能发现物理规律, 还能求解偏微分方程.。近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN)是一种科学机器在传统数值领域的应用方法,能够用于解决与偏微分方程 (PDE)
2022-11-02 22:01:14 16662 70
原创 PINN物理信息驱动的深度学习方向重要进展与趋势
将物理先验知识嵌入深度学习模型和算法中,可提高学习效率和能力,目前这个方向有哪些重要进展和趋势?
2022-06-16 11:15:12 2996 1
原创 PINN内嵌物理知识神经网络入门及文献总结
内嵌物理知识深度学习方法(PINN)已经成功用于解决各类科学计算问题,其本质是将物理先验知识嵌入神经网络训练中,将一个求解PDE的问题转化为一个优化问题。这篇博客主要记录PINN相关论文
2021-09-03 10:00:28 61365 58
原创 KL散度公式详解
目录文章目录Jensen's inequality讲解KL散度(又名relative entropy)mutual informationJensen’s inequality$f(\int\mathrm{x}p(x)dx)\leqslant\int\mathbb{f}(x)p(x)dx$,根据$f(E(x))\leqslant\mathbb{E}(f(x))$Jensen’s inequ...
2020-09-01 21:34:49 7207
原创 物理驱动深度学习方法总结
PINN综述Blog介绍:内嵌物理知识神经网络 (Physics Informed Neural Network,简称PINN) 是一种科学机器在传统数值领域的应用方法,特别是用于解决与偏微分方程 (PDE) 相关的各种问题,包括方程求解、参数反演、模型发现、控制与优化等。综述论文基于神经网络的偏微分方程求解方法研究综述,中文综述。
2023-11-17 08:38:36 1519
原创 一种基于物理信息极限学习机的PDE求解方法
近年来,物理信息驱动的深度学习方法用于科学计算问题受到了越来越多的关注,其中,physic informed neural network(PINN)在求解微分方程(PDE)正逆问题上展现出巨大的优势,但是并不适用于某些需要实时响应的应用。由此,下面将介绍一种基于物理信息极限学习机的PDE求解方法,用于线性微分方程的快速求解,能实现近实时高精度求解(秒级求解)。首先介绍PINN及极限学习机基本方法,其次介绍基于物理信息的极限学习方法,随后介绍求解问题与背景,最后展示基于Pytorch实现的算例结果。
2022-12-02 15:07:32 2510 8
原创 【Paraview教程】第一章安装与基础介绍
ParaView基本的交互式可视化功能,主要包括数据加载,数据处理,参数调整和数据交互等功能。如切割,剪裁,轮廓,探测都能通过paraview实现。
2022-11-27 09:10:09 12801 2
原创 Reinforcement learning-强化学习基础
强化学习的关键要素有:environment,reward,action 和 state。有了这些要素我们就能建立一个强化学习模型。强化学习解决的问题是,针对一个具体问题得到一个最优的policy,使得在该策略下获得的reward最大。所谓的policy其实就是一系列action,也就是sequential data。
2022-10-28 11:07:46 771
原创 稳健回归-鲁棒回归
稳健回归(robust regression)是统计学稳健估计中的一种方法,其主要思路是将对异常值十分敏感的经典最小二乘回归中的目标函数进行修改。经典最小二乘回归以使误差平方和达到最小为其目标函数
2022-10-28 11:02:46 2536
原创 Extended Physics-InformedNeural Networks (XPINNs)
cPINN是通过区域分解,每个区域使用小的网络进行训练,使得求解时不同区域能够并行计算。
2022-10-28 11:00:47 1053
原创 Solving Inverse Problems With Deep Neural Networks
本篇论文对深度神经网络解决欠定(underdetermined)的逆问题的鲁棒性(robustness)进行了研究。研究内容包括用Guassian measurement的压感(compressed sening)以及通过Founier and Radon measurement的图像恢复
2022-10-28 10:57:29 1416
原创 Systems biology informed deep learning for inferring parameters and hidden dynamics
利用网络训练拟合模型参数,提出了system-biology -informed 神经算法,能够可靠而准确的推断hidden dynamics,能够用很少的观测数据对dynamics和模型参数进行推断。
2022-10-28 10:55:23 409
原创 PhyGeoNet一种可用于不规则区域的物理信息极限学习机
主要就是解决了CNN求解域为非规则形状这样问题,同时将物理信息嵌入CNN中,实现了物理数据双驱动。
2022-10-28 10:50:36 1330
原创 PDEBench-AI求解微分方程新基准
近年来,物理驱动深度学习方法非常热门,特别是在求解逆问题上有独特的优势。在该领域,很多研究者在不同数据集上已经提出了性能非常好的求解算法。但都在各自数据集和问题上进行测试比较,发展类似图像benchmark如CIFAR10等公开数据集,比较迫切。现在,在AI求微分方程领域制作了一个PDEBech,可用于基准对比。
2022-10-28 09:34:31 2191 1
原创 Extended Physics-InformedNeural Networks论文详解
提出了更灵活分解域的XPINN方法,比cPINN区域分解更灵活,而且使用与所有方程。
2022-07-22 10:09:17 1653
原创 Self-supervised learning method to solve the inverse problem of Fokker-Planck Equation
Fokker-Planckequation方程在很多应用中是未知的,使得直接求解PDE这样的正问题充满挑战,通过监督学习从观测数据中恢复FPE亟待解决创新点提出FPE-net,直接将FPE-netterm作为网络权重,能够从观测数据中恢复FPEterm,而且对于数据降噪也有效果。...
2022-07-22 10:06:05 636
原创 通用生成函数(Universal Generating Function,UGF)投稿论文期刊总结
UGF期刊INTERNATIONAL JOURNAL OF SYSTEMS SCIENCEJournal of Mechanical Science and TechnologyIF=1.734letpub,年文章:504,国内收录:Develop a new method to reliability determination of a solar array mechanism via universal generating functionJournal of En
2022-06-08 08:57:17 721
转载 P问题、NP问题、NP完全问题和NP难问题
为了避免对这四个问题有一定理解基础的人看的很烦,个人简单理解的四个问题:P问题:有多项式时间算法,算得很快的问题。NP问题:算起来不确定快不快的问题,但是我们可以快速验证这个问题的解。NP-complete问题:属于NP问题,且属于NP-hard问题。NP-hard问题:比NP问题都要难的问题。详细说一下这四个问题:开始之前先说明两个概念:多项式,时间复杂度(知道的请自动跳过)。1.多项式: [公式] ,形如这种形式的就被称为x的最高位为n的多项式。2.时间复杂度:定义为随着问题规模的增大,
2022-05-23 10:42:40 1191
原创 latex缩进与对齐小技巧
全文修改对整篇文章修改\documentclass[a4paper,fleqn,tbtags]{article}局部对齐如果只需要对一行公式进行左对齐的话, 可使用\usepackage[fleqn]{amsmath}begin{flalign}your equation (1)\end{flalign}如果你说的是某一个公式有两三行, 你想把这几行做左对齐,用\begin{flalign}\begin{split}your equation (1)your equation
2022-03-29 22:29:07 6910
原创 科研论文实用工具汇总——阅读器小技巧
论文阅读管理器Mendeley优势收文献方面,Mendeley 拖 PDF 读元数据很方便。Mendeley 有个功能可以加鸡腿,数据库全文搜索非常快。界面简洁,颜色搭配舒服,这是我最喜欢的一个方面。快捷键论文跳页,Ctrl+Alt+G搜索关键字,Ctrl+F Ctrl+Shift+S福昕论文阅读器快捷键阅读器回到跳转前一个页面,Alt + left...
2022-03-25 16:16:44 1191
原创 latex图表操作
表格表格重新编号\setcounter{table}{3} %编号为4 \begin{table}[!http] \begin{tabular}{cccccccc} xxx \end{tabular} \end{table}图重新编号 \begin{figure*}[!htbp] \centering \setcounter{figure}{3} %编号为4 \subfigure[case 1 with LHS]{ \includegraphics
2022-03-01 22:58:59 782
原创 mac latex与texstudio安装
mac latex与texstudio安装教程maclatex安装点击下载的MacTex.pkg文件开始安装MacTeX。连续点击“继续”“同意”“安装”等选项在弹出的界面输入Mac密码开始安装软件。安装快结束时可能会弹出提示需要命令行开发者工具,点击安装安装成功后打开启动台,发现成功安装5个软件,将其拖入同一个分类并将该分类命名为MacTeXtexstudio安装双击testudio-4.2.0使用安装好上面两个软件打开texstudio,就可以正常编辑了学习使用
2022-02-27 11:41:12 2584 4
原创 在Word中打开MathType时出现AutoExecCLS错误解决方案
在Word中打开MathType时出现AutoExecCLS错误解决方案
2022-02-24 17:03:09 1024
hp-VPINNs-master.zip
2021-09-07
梯度下降算法分析的总结ppt
2020-03-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人