Plydata 开源项目安装与使用教程
plydata A grammar for data manipulation in Python 项目地址: https://gitcode.com/gh_mirrors/pl/plydata
1. 目录结构及介绍
Plydata 的仓库遵循了一定的组织结构来维护其源代码和相关资源。以下是主要的目录结构及其简要说明:
plydata/
├── codecov.yml # Codecov 配置文件,用于代码覆盖率报告
├── coveragerc # 覆盖率测试报告的配置
├── docs # 文档相关文件夹,包括最终的文档生成配置
│ └── ... # 包含.rst 和其他 Sphinx 文档配置文件
├── gitattributes # Git 属性文件,可能用于指定文件如何在Git中处理
├── gitignore # 忽略特定文件或目录的列表
├── github # 与GitHub工作流程相关的脚本或配置
├── how-to-release.rst # 发布新版本的指导
├── MANIFEST.in # 指示哪些额外文件应包含在发布包中
├── Makefile # Makefile,用于自动化构建任务
├── pytest.ini # PyTest 测试框架的配置文件
├── README.rst # 项目的快速入门和概述
├── requirements # 项目依赖的说明文件夹
│ ├── base.txt # 基础依赖清单
│ └── tests.txt # 测试所需的额外依赖
├── requirements-tools.txt # 工具开发需求
├── setup.cfg # distutils/setuptools 的配置文件
├── setup.py # Python 打包的设置文件,用于pip安装
├── test_data # 可能包含的测试数据
├── tox.ini # Tox 的配置文件,用于跨Python环境测试
└── versioneer.py # 版本控制工具,自动管理版本号
每个模块都是为了支持项目的开发、测试、文档生成以及发布流程。
2. 项目的启动文件介绍
Plydata的核心功能通过导入并使用其模块来启动。虽然没有一个直接的“启动文件”作为传统应用那样运行,但在使用Plydata时,通常从你的Python脚本或交互式环境中通过导入plydata
库开始。例如,在Python脚本开头加入以下代码是常见的实践:
import pandas as pd
from plydata import define, query, if_else, ply
随后,你可以利用这些函数来操作DataFrame,这就是项目的“启动”方式,即在你的数据分析脚本中应用Plydata提供的语法和函数。
3. 项目的配置文件介绍
Plydata自身并不直接要求用户进行复杂的配置。不过,有几个文件扮演着配置角色:
setup.cfg
: 这个文件定义了项目的元数据和编译指令,对于打包和发布到PyPI至关重要。pytest.ini
: 设定了PyTest的行为,比如收集测试的规则,这对于持续集成和测试自动化非常关键。.gitignore
: 控制Git应该忽略哪些文件或文件夹不被版本化,这有助于保持仓库整洁,排除如缓存、日志等无需跟踪的文件。MANIFEST.in
: 明确指示哪些非Python文件(如文档、资源配置)也应包含在发布的包中。tox.ini
: 如果开发者想在多个Python版本下测试项目的一致性,该文件用来配置Tox环境。
虽然这些文件对最终用户来说不是直接操作的配置,但它们对于项目的开发和维护流程至关重要,确保了项目的质量和兼容性。用户级的配置更多体现在如何选择和调用Plydata的API上,而不是直接修改项目内的配置文件。
plydata A grammar for data manipulation in Python 项目地址: https://gitcode.com/gh_mirrors/pl/plydata