Peppa_Pig_Face_Landmark 项目使用教程
Peppa_Pig_Face_Landmark 项目地址: https://gitcode.com/gh_mirrors/pe/Peppa_Pig_Face_Landmark
1. 项目的目录结构及介绍
Peppa_Pig_Face_Landmark/
├── TRAIN/
│ └── face_landmark/
│ ├── README.md
│ └── ...
├── figure/
├── .gitignore
├── CITATION.cff
├── LICENSE
├── README.md
├── demo.py
├── requirements.txt
└── setup.py
- TRAIN/: 包含训练相关代码的文件夹,其中
face_landmark
子文件夹包含了训练模型的代码和相关文档。 - figure/: 存放项目中使用的图片或图表的文件夹。
- .gitignore: Git 忽略文件,用于指定不需要版本控制的文件或文件夹。
- CITATION.cff: 项目引用文件,用于学术引用。
- LICENSE: 项目的开源许可证文件,本项目使用 Apache-2.0 许可证。
- README.md: 项目的介绍文档,包含项目的基本信息和使用说明。
- demo.py: 项目的启动文件,用于演示和测试人脸检测和关键点定位功能。
- requirements.txt: 项目的依赖文件,列出了项目运行所需的 Python 包。
- setup.py: 项目的安装脚本,用于安装项目所需的依赖和配置。
2. 项目的启动文件介绍
demo.py
demo.py
是项目的启动文件,用于演示和测试人脸检测和关键点定位功能。以下是该文件的主要功能和使用方法:
-
功能:
- 从摄像头、视频文件或图片目录中检测人脸并定位关键点。
- 支持单张图片、视频流和多张图片的批量处理。
-
使用方法:
- 使用摄像头进行实时检测:
python demo.py --cam_id 0
- 检测视频文件中的人脸:
python demo.py --video test.mp4
- 检测指定目录下的所有图片:
python demo.py --img_dir /path/to/images
- 使用摄像头进行实时检测:
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 包及其版本。以下是该文件的内容示例:
PyTorch==1.9.0
onnxruntime==1.8.0
opencv-python==4.5.3.56
- PyTorch: 用于深度学习模型的训练和推理。
- onnxruntime: 用于加速模型的推理过程。
- opencv-python: 用于图像处理和显示。
setup.py
setup.py
是项目的安装脚本,用于安装项目所需的依赖和配置。以下是该文件的主要内容:
from setuptools import setup, find_packages
setup(
name='Peppa_Pig_Face_Landmark',
version='1.0',
packages=find_packages(),
install_requires=[
'PyTorch==1.9.0',
'onnxruntime==1.8.0',
'opencv-python==4.5.3.56'
],
entry_points={
'console_scripts': [
'peppa_face_landmark=demo:main',
],
},
)
- name: 项目的名称。
- version: 项目的版本号。
- packages: 需要安装的 Python 包。
- install_requires: 项目运行所需的依赖包。
- entry_points: 定义了项目的命令行入口,可以通过
peppa_face_landmark
命令启动项目。
通过以上配置文件和启动文件,用户可以方便地安装和使用 Peppa_Pig_Face_Landmark
项目进行人脸检测和关键点定位。
Peppa_Pig_Face_Landmark 项目地址: https://gitcode.com/gh_mirrors/pe/Peppa_Pig_Face_Landmark