云检测数据集项目推荐内容

云检测数据集项目推荐内容

38-Cloud-A-Cloud-Segmentation-Dataset This data set includes Landsat 8 images and their manually extracted pixel-level ground truths for cloud detection. 38-Cloud-A-Cloud-Segmentation-Dataset 项目地址: https://gitcode.com/gh_mirrors/38/38-Cloud-A-Cloud-Segmentation-Dataset

项目简介

本项目是基于Landsat 8卫星图像的云检测数据集,名为38-Cloud。该数据集包含了38个Landsat 8场景图像及其手动提取的像素级地面真实值,用于云检测。图像被裁剪成多个384x384像素的补丁,以适应基于深度学习的语义分割算法。

核心功能

  • 数据集结构:数据集分为训练集和测试集,每个集包含红色、绿色、蓝色和近红外波段的图像补丁以及相应的地面真实值。
  • 云检测算法:提供了一种端到端的云检测算法——Cloud-Net,可用于在Landsat 8图像上进行云检测。
  • 性能评估:提供了用于评估云检测结果的MATLAB代码。

最近更新

  • 数据集扩展:数据集已经扩展,现在可以通过Kaggle或另一个服务器下载完整数据集。
  • 算法优化:Cloud-Net模型进行了优化,以提高云检测的准确性。

推荐模块

  1. 项目基础介绍

    • 数据集的来源和目的
    • 数据集的主要组成部分
  2. 核心功能详解

    • 数据集的详细结构
    • Cloud-Net算法的工作原理和实现细节
    • 评估代码的使用方法和输出结果
  3. 项目应用案例

    • 展示如何使用38-Cloud数据集进行云检测的案例
    • 分析Cloud-Net模型在实际应用中的表现
  4. 社区贡献

    • 如何为项目贡献代码或数据
    • 如何在研究中引用本项目
  5. 未来工作方向

    • 数据集的潜在扩展
    • Cloud-Net模型的改进计划

通过这些模块,本项目可以为遥感图像处理和云检测领域的研究人员提供一个宝贵的资源。

38-Cloud-A-Cloud-Segmentation-Dataset This data set includes Landsat 8 images and their manually extracted pixel-level ground truths for cloud detection. 38-Cloud-A-Cloud-Segmentation-Dataset 项目地址: https://gitcode.com/gh_mirrors/38/38-Cloud-A-Cloud-Segmentation-Dataset

### 遥感影像云检测数据集下载 对于遥感影像云检测的任务,可以考虑以下几个公开可用的数据集: #### 1. CHLandsat8 数据集 CHLandsat8 是一个专门针对 Landsat 8 卫星图像设计的云检测数据集。它包含了多个 Landsat 8 OLI/TIRS 地形校正场景,并提供了手工标注的云掩码文件。这些掩码文件可用于训练和测试云检测模型。 - **项目地址**: [https://gitcode.com/Resource-Bundle-Collection/2ab61](https://gitcode.com/Resource-Bundle-Collection/2ab61)[^2] - **特点**: - 包含96个 Landsat 8 场景。 - 每个场景提供 `.TIF` 格式的波段文件、质量带文件以及元数据文件 `MTL.txt`。 - 手工生成的云掩码以 `.img` (ENVI) 格式存储。 #### 2. LandSat8-38Cloud 数据集 LandSat8-38Cloud 数据集同样基于 Landsat 8 图像构建,旨在支持云覆盖评估(CCA)。此数据集中每张图像都有对应的近似云状态分类标签,分为 Clear (<35%), Mid Cloud (35%-65%) 和 Cloudy (>65%) 三种级别。 - **描述链接**: 参考说明文档[^3]。 - **特点**: - 提供了详细的云覆盖率分级标准。 - 文件结构清晰,便于解析和利用。 #### 3. GF-1 WFV 云与云影检测数据集 GF-1 宽视场相机(WFV)数据集适用于更高分辨率下的云及云阴影检测任务。其像素级标注能够帮助提升细粒度特征的学习能力。 - **详情参见**: 关键参数汇总表[^4]。 - **主要特性**: - 总计108幅高分一号卫星拍摄的宽视角多光谱影像及其对应标签图。 - 支持多种机器学习框架接入开发。 以下是 Python 脚本示例代码片段展示如何读取其中一种格式的 TIFF 文件并可视化部分内容: ```python import rasterio from matplotlib import pyplot as plt def load_tiff_image(file_path): with rasterio.open(file_path) as dataset: array = dataset.read() # Read all bands into a NumPy array. profile = dataset.profile return array, profile if __name__ == "__main__": tiff_file = 'path_to_your_landsat_or_gf1_data.tif' img_array, meta_info = load_tiff_image(tiff_file) # Display the first band of the image using Matplotlib. plt.figure(figsize=(8, 8)) plt.imshow(img_array[0], cmap='gray') plt.title('First Band Visualization'), plt.axis('off') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚婕妹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值