minet 开源项目使用教程
minet A webmining CLI tool & library for python. 项目地址: https://gitcode.com/gh_mirrors/min/minet
项目介绍
minet 是一个用于 Python (>= 3.7) 的网络挖掘命令行工具和库,能够从各种网络源(如原始网页、Facebook、YouTube、Twitter、Media Cloud 等)收集和提取数据。它采用了一种非常简单的方法来解决各种网络挖掘问题,允许用户从命令行执行广泛的网络挖掘任务。minet 不需要数据库,原始的 CSV 文件足以完成大部分工作。此外,minet 还提供了一个高级的编程接口,用户可以自由使用其工具来更好地适应自己的使用场景。
minet 由 médialab SciencesPo 的研究工程师开发,是十多年来针对社会科学的网络挖掘实践的整合。它被设计为:
- 低技术:需要最少的资源,如内存、CPU 或硬盘空间,并且应该能够在任何低成本 PC 上工作。
- 容错:能够在网络状况不佳时恢复,并在适当的时候重试 HTTP 调用。
- Unix 兼容:可以轻松地通过管道传输,并且知道如何与通常的流一起工作。
项目快速启动
安装 minet
minet 可以通过以下两种方式安装:
1. 作为独立 CLI 工具安装(仅适用于 macOS >= 10.14 和 Ubuntu 等类似系统)
curl -sSL https://raw.githubusercontent.com/medialab/minet/master/scripts/install.sh | bash
2. 作为 Python CLI 工具和库安装
pip install minet
快速启动示例
以下是一个简单的示例,展示如何使用 minet 下载大量 URL 并提取其中的文本内容:
# 下载大量 URL 并生成报告
minet fetch url -i urls.csv > report.csv
# 从下载的 HTML 文件中提取原始文本
minet extract -i report.csv -I downloaded > extracted.csv
应用案例和最佳实践
1. 下载大量 URL
假设你有一个包含大量 URL 的 CSV 文件 urls.csv
,你可以使用以下命令快速下载这些 URL 并生成报告:
minet fetch url -i urls.csv > report.csv
2. 提取 HTML 中的文本内容
下载完成后,你可以使用以下命令从下载的 HTML 文件中提取文本内容:
minet extract -i report.csv -I downloaded > extracted.csv
3. 从 Twitter 抓取数据
你可以使用 minet 从 Twitter 抓取数据,例如抓取特定用户的推文:
minet twitter scrape tweets "from:medialab_ScPo" > tweets.csv
典型生态项目
minet 作为一个强大的网络挖掘工具,可以与其他数据处理和分析工具结合使用,形成一个完整的生态系统。以下是一些典型的生态项目:
1. Jupyter Notebook
minet 可以与 Jupyter Notebook 结合使用,方便用户进行实验和教学。你可以在 Jupyter Notebook 中使用 minet 的 Python 库接口,进行更复杂的网络挖掘任务。
2. Pandas
minet 生成的 CSV 文件可以直接导入 Pandas 进行进一步的数据处理和分析。Pandas 提供了强大的数据处理功能,可以帮助你更好地理解和利用 minet 收集的数据。
3. Scrapy
对于更复杂的网络爬虫任务,你可以结合使用 minet 和 Scrapy。minet 可以用于初始的数据收集和预处理,而 Scrapy 可以用于更深入的网页抓取和数据提取。
通过这些生态项目的结合,minet 可以成为一个强大的网络挖掘和数据分析工具链的一部分,帮助用户更高效地完成各种网络挖掘任务。
minet A webmining CLI tool & library for python. 项目地址: https://gitcode.com/gh_mirrors/min/minet