Attention Gym 使用教程
1. 项目介绍
Attention Gym 是一个开源项目,旨在为研究人员和开发者提供一个实验和优化不同注意力机制的沙盒环境。该项目利用 FlexAttention API 实现了多种注意力机制的示例,包括性能比较和用于创建及组合注意力遮罩的实用函数,以帮助用户在模型中探索和优化注意力机制。
2. 项目快速启动
准备工作
确保安装了 PyTorch(版本 2.5 或更高)。
安装
git clone https://github.com/pytorch-labs/attention-gym.git
cd attention-gym
pip install .
使用
Attention Gym 的使用主要有两种方式:
运行示例脚本
项目中的许多文件可以直接执行以演示它们的功能:
python attn_gym/masks/document_mask.py
这些脚本通常会生成可视化,以帮助您理解注意力机制。
在项目中导入使用
您可以通过导入 Attention Gym 的组件在您自己的项目中使用它们:
from torch.nnattention.flex_attention import flex_attention, create_block_mask
from attn_gym.masks import generate_sliding_window
# 使用导入的函数
sliding_window_mask_mod = generate_sliding_window(window_size=1024)
block_mask = create_block_mask(sliding_window_mask_mod, 1, 1, S, S, device=device)
out = flex_attention(query, key, value, block_mask=block_mask)
请注意,Attention Gym 目前处于积极开发中,我们不提供任何向后兼容性保证。API 和功能可能会在不同版本之间发生变化。我们建议在您的项目中固定特定的版本,并在升级时仔细审查更改。
3. 应用案例和最佳实践
为了全面了解如何在现实世界的场景中使用 FlexAttention,您可以探索 examples/
目录。这些端到端的实现展示了如何将各种注意力机制集成到您的模型中。
4. 典型生态项目
目前,Attention Gym 项目的主要语言是 Python,并且它是完全开源的,允许社区贡献新的遮罩或得分修正模块。如果您有兴趣为 Attention Gym 贡献,可以查看 CONTRIBUTING.md
文件了解详情。