推荐开源项目:LabelImg - 简易图像标注工具

LabelImg是一个基于Python的跨平台图像标注工具,支持Windows、MacOS和Linux。它简化了数据标注过程,适用于物体检测、图像分类等场景,提供XML和YAML格式支持,以及自定义配置选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐开源项目:LabelImg - 简易图像标注工具

labelImgLabelImg is now part of the Label Studio community. The popular image annotation tool created by Tzutalin is no longer actively being developed, but you can check out Label Studio, the open source data labeling tool for images, text, hypertext, audio, video and time-series data.项目地址:https://gitcode.com/gh_mirrors/lab/labelImg

在计算机视觉领域中,数据标注是至关重要的一步,它为模型提供训练所需的"理解"世界的基础。 是一个简单而实用的图像标签工具,由 Python 编写,用于帮助开发者和研究者快速地对图像进行边界框标注。

项目简介

LabelImg 是一款跨平台的图形界面应用程序,支持Windows、MacOS和Linux操作系统。它允许用户通过拖放方式加载图像,并通过直观的界面添加、移动和调整边界框。此外,它还支持XML和YAML两种常见的标注文件格式,方便与各种深度学习框架集成。

技术分析

  • Python 基础:项目基于 Python 实现,利用了 PyQt5 进行 GUI 开发,这是一个强大且灵活的库,使得 LabelImg 能够在不同的操作系统上运行。

  • XML 和 YAML 支持:LabelImg 具有生成 PASCAL VOC 格式(XML)和 YOLO 格式(YAML)的能力,这两种格式被广泛应用于物体检测任务的数据标注。

  • 用户友好:它的界面设计简洁明了,只需简单的鼠标操作即可完成标注工作。用户可以通过菜单或快捷键轻松切换不同的功能。

  • 自定义配置:LabelImg 提供了一定程度的自定义性,用户可以配置预设类别,以适应不同项目的需求。

应用场景

  1. 物体检测:对于开发物体检测模型如 Faster R-CNN, YOLO, SSD 等,LabelImg 可用于创建训练数据集。

  2. 图像分类:虽然主要用于边界框标注,但通过指定全局标签,也可以用于单一类别的图像分类。

  3. 学术研究:科研人员在进行计算机视觉实验时,可以快速高效地准备数据集。

  4. 教育用途:教学场景中,它可以帮助学生理解数据标注过程,提高动手能力。

特点

  1. 轻量级:安装和使用都非常简单,无需复杂的配置。
  2. 源码开放:作为开源项目,用户可以根据需求自由修改代码,甚至贡献自己的改进。
  3. 实时保存:所有改动都会自动保存,避免意外丢失工作进度。
  4. 多语言支持:除了默认的英文,还可以选择简体中文等其他语言。

总体来说,LabelImg 是一个高效、易用的图像标注工具,无论你是初学者还是经验丰富的开发者,都能从中受益。如果你正需要进行计算机视觉相关的数据标注工作,不妨试试 LabelImg,让繁琐的任务变得更便捷。

labelImgLabelImg is now part of the Label Studio community. The popular image annotation tool created by Tzutalin is no longer actively being developed, but you can check out Label Studio, the open source data labeling tool for images, text, hypertext, audio, video and time-series data.项目地址:https://gitcode.com/gh_mirrors/lab/labelImg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武允倩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值