推荐开源项目:Pytorch2TensorRT - 灵活高效的模型部署工具
去发现同类优质开源项目:https://gitcode.com/
1、项目介绍
Pytorch2TensorRT 是一款强大的工具,它旨在简化从Pytorch深度学习框架到NVIDIA TensorRT高性能推理平台的迁移过程。通过该项目,开发者可以快速地将训练好的Pytorch模型转换成ONNX格式,进而编译成TensorRT引擎,以实现高效运行于GPU上的推理任务。特别适合那些对速度有严格要求的应用场景,如实时视频分析、自动驾驶等。
2、项目技术分析
项目采用的技术路径是 "Pytorch model -> ONNX file -> TensorRT engine",这允许模型在保持精度的同时,充分利用TensorRT的硬件加速能力。目前,项目已支持FP32、FP16以及INT8三种精度模式。对于不被原生TensorRT支持的操作(OP),项目提供编写自定义插件的功能,确保了模型的完整转换。
3、项目及技术应用场景
- 计算机视觉:如目标检测(YoloV8n)、语义分割、图像分类等应用,可以在保留较高准确性的前提下,显著提升推理速度。
- 自然语言处理:对于NLP模型,如语音识别、机器翻译,能够利用TensorRT的高速计算,优化实时服务性能。
- 推荐系统:在大规模实时推荐场景中,使用Pytorch2TensorRT能够提高推荐策略的响应速度,提升用户体验。
4、项目特点
- 易用性:提供清晰的转换流程和示例代码,使用户能够轻松完成从Pytorch到TensorRT的转换。
- 灵活性:支持不同精度模式(FP32、FP16、INT8),适应不同的性能和内存需求。
- 兼容性:持续更新,最新版本支持TensorRT 8.4.1.5,适配CUDA 11.8.89和CUDNN 8.9.2.26。
- 扩展性:对于不支持的OP,可以编写自定义插件,增强了项目的普适性。
为了更深入地体验项目,请参照提供的示例脚本,一步步将你的Pytorch模型转化为TensorRT引擎,感受高速推理的魅力吧!
# 示例:转换ONNX文件为FP16 TensorRT引擎
python main.py --batch_size 32 --mode fp16 --onnx_file_path my_files/centernet.onnx --engine_file_path my_files/test_fp16.engine
# 示例:转换ONNX文件为INT8 TensorRT引擎
python main.py --mode int8 --onnx_file_path my_files/yolov8n.onnx --engine_file_path my_files/yolov8n_int8.engine --imgs_dir imgs_dataset
如果您正在寻求一种高效的方式将Pytorch模型部署到生产环境中,那么Pytorch2TensorRT无疑是一个值得尝试的强大工具。
去发现同类优质开源项目:https://gitcode.com/