E2E-MLT:端到端多语言场景文字识别指南

E2E-MLT:端到端多语言场景文字识别指南

E2E-MLT E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text项目地址:https://gitcode.com/gh_mirrors/e2/E2E-MLT


项目介绍

E2E-MLT 是一个开创性的开源项目,旨在提供一种无约束的端到端方法,专门针对多语言场景下的文本检测与识别。由 Michal Bušta、Yash Patel 和 Jiri Matas 联合开发,该项目设计了一个单一的完全卷积神经网络(FCN),该网络具有能够共享任务的层次结构,以应对多种语言的文本识别挑战。E2E-MLT 是首个公开发布的针对场景文本的多语言光学字符识别(OCR)系统,即便是在多语言环境下训练,也能展现出与专注英文文本方法相媲美的竞争力。

项目快速启动

要开始使用 E2E-MLT,首先确保您的开发环境已安装以下软件:

  • Python 3.x
  • OpenCV-Python
  • PyTorch >= 0.4.1
  • torchvision
  • Warp-CTC(通过 https://github.com/SeanNaren/warp-ctc/ 获取)

接下来,从 GitHub 下载项目源码:

git clone https://github.com/MichalBusta/E2E-MLT.git
cd E2E-MLT

下载预训练模型:

wget http://ptak.felk.cvut.cz/public_datasets/SyntText/e2e-mlt.h5

运行演示示例:

python3 demo.py -model=e2e-mlt.h5

此命令将使用预训练模型对提供的输入图像执行文本检测和识别。

应用案例与最佳实践

应用案例

E2E-MLT 可广泛应用于多语言环境下的文本自动提取,例如在国际文档处理、跨语言的视觉搜索、以及多语种广告牌自动翻译等领域。

最佳实践

  1. 数据增强:为了提高模型在各种场景下的泛化能力,应用数据增强技术,模拟不同的光线、字体大小及角度变化。
  2. 多阶段训练:先在大容量的基础数据集上预训练模型,之后在目标语言的特定数据上进行微调。
  3. 超参数调整:细致地调整学习率、批次大小等超参数,找到最适合您应用场景的配置。

典型生态项目

虽然直接关联的生态项目未详细列出,E2E-MLT通常会被集成到更广泛的计算机视觉解决方案中,比如 OCR 工具链、智能文档处理软件或国际化应用。开发者社区可能围绕这个项目发展了一系列工具和库,支持更多自定义的语言模型整合、界面化的应用前端或数据预处理脚本,尽管这些不直接包含在原项目仓库内。对于想要扩展其功能或结合其他技术的开发者来说,研究类似的开源项目或者参与社区讨论将会非常有益。


本指南旨在快速引导您入门E2E-MLT,深入探索和定制则需参考项目文档和社区资源。希望这个端到端的多语言文本识别解决方案能在您的项目中大显身手。

E2E-MLT E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text项目地址:https://gitcode.com/gh_mirrors/e2/E2E-MLT

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍妲葵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值