PrimeKG 开源项目使用教程
项目地址:https://gitcode.com/gh_mirrors/pr/PrimeKG
1. 项目介绍
PrimeKG 是一个面向精准医学的知识图谱,它整合了20个高质量的生物医学资源,描述了17,080种疾病及其与药物、基因、蛋白质、生物过程、解剖结构、表型等多种生物实体之间的关系。PrimeKG 不仅提供了丰富的生物医学数据,还包含了临床指南的文本描述,支持多模态分析,旨在为精准医学研究提供一个全面的知识平台。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 PrimeKG 所需的依赖包:
pip install -r updated_requirements.txt
2.2 下载 PrimeKG 数据
你可以从 Harvard Dataverse 下载 PrimeKG 的 CSV 文件:
wget -O kg.csv https://dataverse.harvard.edu/api/access/datafile/6180620
2.3 加载和使用 PrimeKG
使用 Pandas 加载 PrimeKG 数据并进行查询:
import pandas as pd
# 加载 PrimeKG 数据
primekg = pd.read_csv('kg.csv', low_memory=False)
# 查询疾病相关的数据
disease_data = primekg.query('y_type=="disease" | x_type=="disease"')
print(disease_data.head())
3. 应用案例和最佳实践
3.1 药物-疾病关系预测
PrimeKG 包含了大量的药物-疾病关系数据,可以用于药物再利用和药物-疾病关系预测。以下是一个简单的示例,展示如何使用 PrimeKG 进行药物-疾病关系预测:
# 查询药物和疾病之间的关系
drug_disease_relations = primekg.query('x_type=="drug" & y_type=="disease"')
# 统计药物和疾病之间的关系数量
relation_counts = drug_disease_relations['relation'].value_counts()
print(relation_counts)
3.2 疾病相似性分析
通过 PrimeKG,可以分析不同疾病之间的相似性,从而为疾病的诊断和治疗提供参考。以下是一个示例,展示如何计算两种疾病之间的相似性:
# 选择两种疾病
disease1 = 'Autism'
disease2 = 'Epilepsy'
# 查询两种疾病的相关数据
disease1_data = primekg.query('node_name=="Autism"')
disease2_data = primekg.query('node_name=="Epilepsy"')
# 计算相似性(示例:简单计数)
similarity = len(pd.merge(disease1_data, disease2_data, on='relation'))
print(f"Disease similarity between {disease1} and {disease2}: {similarity}")
4. 典型生态项目
4.1 PyKEEN
PyKEEN 是一个用于知识图谱嵌入和链接预测的 Python 库。PrimeKG 可以与 PyKEEN 结合使用,进行更复杂的知识图谱分析和预测任务。
pip install pykeen
import pykeen.datasets
# 检查 PyKEEN 是否支持 PrimeKG
pykeen.datasets.has_dataset('primekg')
4.2 Therapeutics Data Commons (TDC)
Therapeutics Data Commons (TDC) 是一个用于药物发现和再利用的数据平台。PrimeKG 可以作为 TDC 的一部分,提供更丰富的生物医学数据支持。
pip install PyTDC
from tdc.resource import PrimeKG
# 加载 PrimeKG 数据
data = PrimeKG(path='/data')
# 获取药物特征
drug_feature = data.get_features(feature_type='drug')
print(drug_feature.head())
通过以上步骤,你可以快速上手 PrimeKG 项目,并利用其丰富的生物医学数据进行精准医学研究。
PrimeKG Precision Medicine Knowledge Graph (PrimeKG) 项目地址: https://gitcode.com/gh_mirrors/pr/PrimeKG
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考