MA-LMM 开源项目使用教程

MA-LMM 开源项目使用教程

MA-LMM (2024CVPR) MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding MA-LMM 项目地址: https://gitcode.com/gh_mirrors/ma/MA-LMM

1. 项目介绍

MA-LMM(Memory-Augmented Large Multimodal Model)是一个用于长时视频理解的高效且有效的模型。该项目的主要目标是设计一个能够处理长时视频的模型,通过在线方式处理视频并将过去的视频信息存储在内存库中,从而在不超出LLM上下文长度约束或GPU内存限制的情况下进行长期分析。MA-LMM可以无缝集成到当前的多模态LLM中,并在多个视频理解任务上实现了最先进的性能。

2. 项目快速启动

2.1 环境准备

首先,克隆项目到本地:

git clone https://github.com/boheumd/MA-LMM.git
cd MA-LMM

2.2 安装依赖

使用pip安装项目依赖:

pip install -e .

如果你在Apple Silicon上运行代码,需要使用eva-decord而不是decord。可以在requirements.txt文件中进行修改:

contexttimer
eva-decord
einops>=0.4.1
fairscale==0.4.4

2.3 下载预训练模型

下载预训练的LLM权重(例如Vicuna-v1.1)并按照以下格式组织:

├── llm
│   ├── vicuna-7b
│   ├── vicuna-13b

2.4 运行示例

你可以通过运行demo.ipynb来探索MA-LMM的演示:

jupyter notebook demo.ipynb

3. 应用案例和最佳实践

3.1 长时视频理解

MA-LMM在长时视频理解任务中表现出色,可以处理包括LVU、Breakfast和COIN等数据集。你可以通过以下命令进行训练和测试:

bash run_scripts/lvu/train.sh
bash run_scripts/lvu/test.sh /path/to/checkpoint

3.2 视频问答

在视频问答任务中,MA-LMM在MSRVTT、MSVD和ActivityNet数据集上进行了实验,并取得了优异的成绩。你可以通过以下命令进行训练和测试:

bash run_scripts/msrvtt/train.sh
bash run_scripts/msrvtt/test.sh /path/to/checkpoint

3.3 视频字幕生成

MA-LMM还可以用于视频字幕生成任务,在Youcook2数据集上进行了实验。你可以通过以下命令进行训练和测试:

bash run_scripts/youcook2/train.sh
bash run_scripts/youcook2/test.sh /path/to/checkpoint

4. 典型生态项目

MA-LMM作为一个多模态模型,可以与其他视频处理和理解项目结合使用,例如:

  • Video-LLaMA: 一个基于LLaMA的视频理解模型,可以与MA-LMM结合进行更复杂的视频分析。
  • InstructBLIP: 一个用于图像-文本对齐的模型,MA-LMM可以作为其插件模块,无需微调即可进行零样本评估。
  • LAVIS: 一个用于视频和图像理解的库,MA-LMM可以作为其扩展模块,提供长时视频理解能力。

通过这些生态项目的结合,MA-LMM可以在更广泛的场景中发挥作用,提升视频理解和分析的效率和效果。

MA-LMM (2024CVPR) MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding MA-LMM 项目地址: https://gitcode.com/gh_mirrors/ma/MA-LMM

内容概要:本文《2025年全球AI Coding市场洞察研究报告》由亿欧智库发布,深入分析了AI编程工具的市场现状和发展趋势。报告指出,AI编程工具在2024年进入爆发式增长阶段,成为软件开发领域的重要趋势。AI编程工具不仅简化了代码生成、调试到项目构建等环节,还推动编程方式从人工编码向“人机协同”模式转变。报告详细评估了主流AI编程工具的表现,探讨了其商业模式、市场潜力及未来发展方向。特别提到AI Agent技术的发展,使得AI编程工具从辅助型向自主型跃迁,提升了任务执行的智能化和全面性。报告还分析了AI编程工具在不同行业和用户群体中的应用,强调了其在提高开发效率、减少重复工作和错误修复方面的显著效果。最后,报告预测2025年AI编程工具将在精准化和垂直化上进一步深化,推动软件开发行业进入“人机共融”的新阶段。 适合人群:具备一定编程基础,尤其是对AI编程工具有兴趣的研发人员、企业开发团队及非技术人员。 使用场景及目标:①了解AI编程工具的市场现状和发展趋势;②评估主流AI编程工具的性能和应用场景;③探索AI编程工具在不同行业中的具体应用,如互联网、金融、游戏等;④掌握AI编程工具的商业模式和盈利空间,为企业决策提供参考。 其他说明:报告基于亿欧智库的专业研究和市场调研,提供了详尽的数据支持和前瞻性洞察。报告不仅适用于技术从业者,也适合企业管理者和政策制定者,帮助他们在技术和商业决策中更好地理解AI编程工具的价值和潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍妲葵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值