DyCo3D项目使用教程
DyCo3D 项目地址: https://gitcode.com/gh_mirrors/dy/DyCo3D
1. 项目目录结构及介绍
DyCo3D项目的目录结构如下:
DyCo3D/
├── dataset/ # 存放数据集相关文件
│ ├── scannetv2/
│ │ ├── train/
│ │ ├── val/
│ │ ├── test/
│ │ ├── val_gt/
│ │ └── scannetv2-labels.combined.tsv
├── doc/ # 存放项目文档
├── lib/ # 存放项目依赖的库文件
│ ├── spconv/
│ └── pointgroup_ops/
├── model/ # 存放模型相关文件
├── util/ # 存放工具类文件
├── .gitignore # 指定git忽略的文件
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── checkpoint.py # 模型检查点相关代码
├── data_loader_util.py # 数据加载工具类代码
├── requirements.txt # 项目依赖的Python包列表
├── solver.py # 解算器相关代码
├── test.py # 测试脚本
└── train.py # 训练脚本
dataset/
:包含训练、验证和测试数据集。doc/
:存放项目文档。lib/
:包含了项目依赖的库,如spconv
和pointgroup_ops
。model/
:存放与模型相关的代码和文件。util/
:包含项目中使用的工具类。- 其他文件:包括项目的配置文件、许可证、说明文件等。
2. 项目的启动文件介绍
项目的启动主要涉及两个脚本:train.py
和test.py
。
-
train.py
:用于启动模型的训练过程。通过指定配置文件和输出路径等参数来启动训练。示例启动命令:
CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port=$((RANDOM + 10000)) train.py --config config/dyco3d_multigpu_scannet.yaml --output_path OUTPUT_DIR --use_backbone_transformer
-
test.py
:用于对训练好的模型进行测试和评估。需要指定配置文件、输出路径和预训练模型路径等参数。示例启动命令:
CUDA_VISIBLE_DEVICES=0 python test.py --config config/dyco3d_multigpu_scannet.yaml --output_path exp/model --resume MODEL --use_backbone_transformer
3. 项目的配置文件介绍
项目的配置文件采用YAML格式,以config/dyco3d_multigpu_scannet.yaml
为例,配置文件包含以下内容:
dataset
:数据集相关配置,包括数据集路径和预处理参数等。model
:模型相关配置,包括模型结构、损失函数、优化器设置等。train
:训练相关配置,如批大小、学习率、训练周期等。test
:测试相关配置,如测试时的批大小、是否使用预训练模型等。
配置文件是项目重要的组成部分,通过修改配置文件可以调整项目的行为,以适应不同的需求。