DyCo3D项目使用教程

DyCo3D项目使用教程

DyCo3D DyCo3D 项目地址: https://gitcode.com/gh_mirrors/dy/DyCo3D

1. 项目目录结构及介绍

DyCo3D项目的目录结构如下:

DyCo3D/
├── dataset/            # 存放数据集相关文件
│   ├── scannetv2/
│   │   ├── train/
│   │   ├── val/
│   │   ├── test/
│   │   ├── val_gt/
│   │   └── scannetv2-labels.combined.tsv
├── doc/                # 存放项目文档
├── lib/                # 存放项目依赖的库文件
│   ├── spconv/
│   └── pointgroup_ops/
├── model/              # 存放模型相关文件
├── util/               # 存放工具类文件
├── .gitignore          # 指定git忽略的文件
├── LICENSE             # 项目许可证文件
├── README.md           # 项目说明文件
├── checkpoint.py       # 模型检查点相关代码
├── data_loader_util.py # 数据加载工具类代码
├── requirements.txt    # 项目依赖的Python包列表
├── solver.py           # 解算器相关代码
├── test.py             # 测试脚本
└── train.py            # 训练脚本
  • dataset/:包含训练、验证和测试数据集。
  • doc/:存放项目文档。
  • lib/:包含了项目依赖的库,如spconvpointgroup_ops
  • model/:存放与模型相关的代码和文件。
  • util/:包含项目中使用的工具类。
  • 其他文件:包括项目的配置文件、许可证、说明文件等。

2. 项目的启动文件介绍

项目的启动主要涉及两个脚本:train.pytest.py

  • train.py:用于启动模型的训练过程。通过指定配置文件和输出路径等参数来启动训练。

    示例启动命令:

    CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port=$((RANDOM + 10000)) train.py --config config/dyco3d_multigpu_scannet.yaml  --output_path OUTPUT_DIR  --use_backbone_transformer
    
  • test.py:用于对训练好的模型进行测试和评估。需要指定配置文件、输出路径和预训练模型路径等参数。

    示例启动命令:

    CUDA_VISIBLE_DEVICES=0 python test.py --config config/dyco3d_multigpu_scannet.yaml --output_path exp/model --resume MODEL --use_backbone_transformer
    

3. 项目的配置文件介绍

项目的配置文件采用YAML格式,以config/dyco3d_multigpu_scannet.yaml为例,配置文件包含以下内容:

  • dataset:数据集相关配置,包括数据集路径和预处理参数等。
  • model:模型相关配置,包括模型结构、损失函数、优化器设置等。
  • train:训练相关配置,如批大小、学习率、训练周期等。
  • test:测试相关配置,如测试时的批大小、是否使用预训练模型等。

配置文件是项目重要的组成部分,通过修改配置文件可以调整项目的行为,以适应不同的需求。

DyCo3D DyCo3D 项目地址: https://gitcode.com/gh_mirrors/dy/DyCo3D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮伦硕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值