BoxeR: Box-Attention for 2D and 3D Transformers 安装与使用指南
BoxeR 项目地址: https://gitcode.com/gh_mirrors/boxer1/BoxeR
1. 项目目录结构及介绍
BoxeR
是一个基于Transformer架构的项目,旨在实现2D对象检测与实例分割,以及3D对象检测。以下是该仓库的主要目录结构和关键文件介绍:
-
根目录:
LICENSE
: 许可证文件,表明项目遵循MIT协议。README.md
: 提供项目概述、主要成果和基本安装指引。setup.py
: 用于安装项目依赖的Python脚本。BoxeR/
: 源代码主目录,包含核心算法逻辑。tests/
: 包含用于测试CUDA操作(如box和实例注意力)的脚本。tools/
: 工具目录,包括数据预处理、运行训练、评估等脚本。e2edet/
: 配置文件夹,存放各种任务(如COCO检测、实例分割、Waymo检测)的配置文件。
-
重要子目录简介:
figs/
,test/
,tools/
: 分别用于存储图表、测试数据和辅助工具。config/
存放所有的配置文件,每个配置对应不同的模型设置和任务类型。
2. 项目的启动文件介绍
在BoxeR
项目中,并没有单一的“启动文件”。然而,核心的运行机制是通过命令行界面来启动训练或者评价过程。主要入口点位于tools/run.py
脚本。通过这个脚本,用户可以指定配置文件路径、模型类型以及任务类型(如detection
, detection3d
, 或者segmentation
)来执行相应的任务。例如,对于COCO数据集上的检测任务,运行命令如下:
python tools/run.py --config e2edet/config/COCO-Detection/boxer2d_R_50_3x.yaml --model boxer2d --task detection
3. 项目的配置文件介绍
配置文件集中存放在e2edet/config
目录下,以YAML格式提供。这些配置文件定义了模型的详细参数,如网络结构、训练超参数、数据集路径等。以boxer2d_R_50_3x.yaml
为例,它可能包含以下几个关键部分:
- 模型结构: 指定使用的Transformer架构版本和相关的层参数。
- 数据集设置: 如COCO或Waymo数据集的具体路径、预处理要求。
- 训练参数: 包括学习率、迭代次数、优化器选择等。
- 实验设置: 是否启用混合精度训练(
use_fp16
)、数据缓存模式(cache_mode
)等高级选项。
每个配置文件都是对特定实验的详尽描述,允许用户微调实验以满足不同需求。通过修改这些配置文件,用户可以直接控制模型的行为和性能指标。
结论
了解并熟练掌握BoxeR
的目录结构、启动流程和配置文件细节,是有效利用此开源项目进行物体检测与分割的关键。通过遵循上述指南,开发者可以迅速地在自己的研究或项目中集成BoxeR
的强大功能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考