StreamRF 项目使用教程

StreamRF 项目使用教程

StreamRF Official implementation of our NeurIPS paper "Streaming Radiance Fields for 3D Video Synthesis" 项目地址: https://gitcode.com/gh_mirrors/st/StreamRF

1. 项目目录结构及介绍

StreamRF 项目的目录结构如下:

StreamRF/
├── configs/
│   ├── meetroom_init.json
│   ├── meetroom.json
│   ├── meetroom_full.json
│   ├── n3dv_init.json
│   ├── n3dv.json
│   ├── n3dv_full.json
│   └── n3dv_full_hightv.json
├── util/
├── .gitignore
├── LICENSE
├── README.md
├── opt.py
├── prepare_dataset.py
├── render_delta.py
├── train_video_n3dv_base.py
├── train_video_n3dv_full.py
└── train_video_n3dv_pilot.py

目录结构介绍

  • configs/: 包含项目的配置文件,用于不同数据集和训练模式的配置。

    • meetroom_init.json: Meet Room 数据集初始化配置。
    • meetroom.json: Meet Room 数据集训练配置。
    • meetroom_full.json: Meet Room 数据集完整训练配置。
    • n3dv_init.json: N3DV 数据集初始化配置。
    • n3dv.json: N3DV 数据集训练配置。
    • n3dv_full.json: N3DV 数据集完整训练配置。
    • n3dv_full_hightv.json: N3DV 数据集高 TV 损失权重配置。
  • util/: 包含项目使用的工具函数和辅助代码。

  • .gitignore: Git 忽略文件配置。

  • LICENSE: 项目许可证文件,采用 BSD-2-Clause 许可证。

  • README.md: 项目说明文档。

  • opt.py: 初始化第一帧模型的脚本。

  • prepare_dataset.py: 数据集准备脚本,用于从视频中提取帧并组织数据结构。

  • render_delta.py: 渲染脚本,用于生成 3D 视频。

  • train_video_n3dv_base.py: 基础训练脚本。

  • train_video_n3dv_full.py: 完整训练脚本。

  • train_video_n3dv_pilot.py: 试点训练脚本。

2. 项目启动文件介绍

2.1 opt.py

opt.py 脚本用于初始化第一帧模型。使用方法如下:

python opt.py -t <log_dir> <data_dir>/0000 -c configs/meetroom_init.json --scale 1.0
  • -t <log_dir>: 指定日志目录。
  • <data_dir>/0000: 指定数据目录和初始帧。
  • -c configs/meetroom_init.json: 指定配置文件。
  • --scale 1.0: 设置缩放比例。

2.2 prepare_dataset.py

prepare_dataset.py 脚本用于准备数据集。使用方法如下:

python prepare_dataset.py <video_dir> <data_dir>
  • <video_dir>: 视频文件目录。
  • <data_dir>: 数据存储目录。

2.3 render_delta.py

render_delta.py 脚本用于渲染 3D 视频。使用方法如下:

python render_delta.py -t <log_dir> <data_dir> -c configs/meetroom_full.json --batch_size 20000 --pretrained <pretrained_ckpt> --frame_end 300 --fps 30 --scale 1.0 --performance_mode
  • -t <log_dir>: 指定日志目录。
  • <data_dir>: 数据目录。
  • -c configs/meetroom_full.json: 指定配置文件。
  • --batch_size 20000: 设置批处理大小。
  • --pretrained <pretrained_ckpt>: 指定预训练模型。
  • --frame_end 300: 设置帧结束位置。
  • --fps 30: 设置帧率。
  • --scale 1.0: 设置缩放比例。
  • --performance_mode: 启用性能模式。

3. 项目的配置文件介绍

3.1 configs/meetroom_init.json

用于 Meet Room 数据集的初始化配置。包含初始化参数和模型设置。

3.2 configs/meetroom.json

用于 Meet Room 数据集的训练配置。包含训练参数、学习率设置和模型优化参数。

3.3 configs/meetroom_full.json

用于 Meet Room 数据集的完整训练配置。包含完整训练参数和模型优化策略。

3.4 configs/n3dv_init.json

用于 N3DV 数据集的初始化配置。包含初始化参数和模型设置。

3.5 configs/n3dv.json

用于 N3DV 数据集的训练配置。包含训练参数、学习率设置和模型优化参数。

3.6 configs/n3dv_full.json

用于 N3DV 数据集的完整训练配置。包含完整训练参数和模型优化策略。

3.7 configs/n3dv_full_hightv.json

用于 N3DV 数据集的高 TV 损失权重配置。包含高 TV 损失权重的训练参数和模型优化策略。

通过以上配置文件,用户可以根据不同的数据集和训练需求进行灵活配置,以达到最佳的 3D 视频合成效果。

StreamRF Official implementation of our NeurIPS paper "Streaming Radiance Fields for 3D Video Synthesis" 项目地址: https://gitcode.com/gh_mirrors/st/StreamRF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋素萍Marilyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值