深蓝蓝蓝蓝蓝
码龄14年
关注
提问 私信
  • 博客:157,341
    157,341
    总访问量
  • 123
    原创
  • 32,011
    排名
  • 142
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:CS博士在读,专注动态3D重建,欢迎交流www

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新加坡
  • 加入CSDN时间: 2010-06-26
博客简介:

wrk226的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    717
    当月
    0
个人成就
  • 获得154次点赞
  • 内容获得32次评论
  • 获得419次收藏
创作历程
  • 1篇
    2024年
  • 2篇
    2023年
  • 92篇
    2022年
  • 15篇
    2021年
  • 7篇
    2020年
  • 9篇
    2019年
成就勋章
TA的专栏
  • 风格迁移
    3篇
  • 3D风格迁移
    3篇
  • 3D物体重建
    9篇
  • 3D人脸重建
    53篇
  • 论文阅读
    90篇
  • 神经渲染
    1篇
  • 妆容迁移
    8篇
  • 隐式表示
    3篇
  • NeRF
    11篇
  • 深度学习算法
    16篇
  • 基础知识
  • 3D基础知识
    3篇
  • 深度学习基础
    3篇
  • 杂七杂八
  • 理财
    2篇
  • 生活
    1篇
  • 图数据库
    4篇
  • JAVA
    9篇
兴趣领域 设置
  • 人工智能
    计算机视觉深度学习自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python编译遇坑总结

原因:u_int16_t 和 u_int32_t 是 Linux/Unix 系统中常用的类型定义,但在 Windows 系统中通常不支持。解决方案:替换所有的 u_int16_t 和 u_int32_t 为标准的 uint16_t 和 uint32_t。解决方案:python setup.py build_ext --inplace -j1。原因:这样可以取消并行编译,更容易获得报错信息。
原创
发布博客 2024.09.08 ·
369 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

GAN训练笔记

d_loss_real:判别器需要判定真实样本为“真”,下降证明判别器变强,上升证明判别器变弱。d_loss_fake:判别器需要判定生成样本为“假”,下降证明判别器变弱,上升证明判别器变强。g_loss_fake:生成器需要生成足够真实的样本,下降证明生成器变弱,上升证明生成器变强。
原创
发布博客 2023.12.18 ·
403 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏

[SIGGRAPH2023-best]3D Gaussian Splatting for Real-Time Radiance Field Rendering

本文提出了一种基于3D高斯体进行场景重建的方案,并提供了高效的渲染器实现。其重建精度,训练速度和推理速度均超越之前的SOTA方案。整体的思路就是先使用传统方案(COLMAP)将多视角图像对齐,并提取稀疏点云。然后以这些点为基础构建高斯体,在训练中动态的增减高斯体的数量和半径。之后对高斯体进行渲染,获得最终的重建结果。
原创
发布博客 2023.11.15 ·
1403 阅读 ·
4 点赞 ·
1 评论 ·
11 收藏

[ECCV2022]Language-Driven Artistic Style Transfer

标题:Language-Driven Artistic Style Transfer如标题所示,本文做的是基于文本引导的风格迁移。整体的思路还是用的AST(arbitrary style transfer)那一套自编码器结构。AST的思路就是通过将原图和目标图都经过一个encoder,得到原图的风格和语义特征以及目标图的风格和语义特征而这篇文章唯一的不同就是目标图自带一套文本描述,因此可以抽取文本的特征,然后将之视作风格特征与原图语义融合,最后通过解码器生成符合文本语义的结果即可。
原创
发布博客 2022.11.30 ·
1167 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

[CVPR2021]LASR: Learning Articulated Shape Reconstruction from a Monocular Video

本文做的是基于视频的3D重建。特色之处在于不需要初始模板,而是直接从一个球形来拟合最终形状。
原创
发布博客 2022.09.08 ·
863 阅读 ·
2 点赞 ·
2 评论 ·
2 收藏

[CVPR2018](SMALR)Lions and tigers and bears: Capturing non-rigid, 3d, articulated shape from images

本文是基于SMAL的改进,主要是增加了对个体的形状优化和纹理的贴合。
原创
发布博客 2022.09.08 ·
367 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[CVPR2017](SMAL)3D Menagerie: Modeling the 3D Shape and Pose of Animals

本文是一篇很经典的3D动物重建的文章。本文以四足动物的玩具模型为样本,为四足动物建立了铰接式3D模板,并提出了基于单图的模板拟合方案。
原创
发布博客 2022.09.08 ·
746 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

[ECCV2020]3D Bird Reconstruction: a Dataset, Model, and Shape Recovery from a Single View

本文首先是提供了一个可以用于分析鸟类行为学的数据集,然后为鸟类设计了一套精细的3D参数化模型,最后提出了一套算法来将3D模型拟合到单视角鸟类图像。
原创
发布博客 2022.08.31 ·
292 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[CVPR2021]Birds of a Feather: Capturing Avian Shape Models from Images

本文做的是基于单视角图片的3D动物重建。和大多数人脸重建模型一样,都默认提供了一个3D模板,然后只要基于模板拟合输入的图像就可以了。但不同于人脸,动物在体型上的变化比人脸要大得多(比如本文中处理的鸟类),因此这里作者提出了一个三阶段方案来进行三维重建。......
原创
发布博客 2022.08.30 ·
739 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[NIPS2018]Visual Object Networks: Image Generation with Disentangled 3D Representation

本文目的是进行无监督的3D形状与纹理生成。主要思路就是直接用3D-GAN给出对应类的形状,然后使用2D图像预测纹理,并通过2.5D sketches作为中介与3D模型进行渲染,最后将渲染结果丢到判别器中构建gan loss来提升整体效果。主要的局限性在于输入的图像要求没有背景。...
原创
发布博客 2022.08.25 ·
306 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

[NIPS2016]Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial

本文是有史以来第一个可以通过无监督训练得到全新3D模型的算法,在此之前的模型大都是通过拼凑已有模型的部分结构来构建新3D模型。而这篇文章最大的创新就是借助了GAN的思想来将3D模型的分布嵌入到隐空间中,从而使得模型可以从任意随机向量中解码出对应的3D模型。...
原创
发布博客 2022.08.25 ·
340 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[TOG2022]DCT-Net: Domain-Calibrated Translation for Portrait Stylization

标题:DCT-Net: Domain-Calibrated Translation for Portrait Stylization本文做的是基于人脸的风格迁移,效果非常惊艳。特点就是在迁移了局部纹理和整体颜色的基础上,进一步融入了对应风格的细节表达。模型最有意思的点就是域之间的对齐,这为少样本的图像迁移提供了一个思路。
原创
发布博客 2022.08.25 ·
1652 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[CVPR2020]Learning to Cartoonize Using White-box Cartoon Representations

标题:Learning to Cartoonize Using White-box Cartoon Representations本文的目的是将任意图片迁移到卡通风格。作者通过专业知识将卡通风格解耦为不同的指标,并分别约束这几个指标,从而使得网络生成的卡通效果可控,因此称之为“白盒”(对比其他的风格迁移方法大都是端到端的黑盒结构,内部基本不可控)。
原创
发布博客 2022.08.25 ·
574 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[CVPR2022]3D Photo Stylization: Learning to Generate Stylized Novel Views from a Single Image

本文做的是基于单图的新视角合成中的风格迁移。之前的工作在做新视角合成的风格迁移时需要多视角图片,而本文只需要一张图。主要思路是先提取2D图片的深度,然后进行深度图补全以恢复所有视角中的深度信息。之后将深度转化为点云再提取点云特征,并迁移到目标图的风格上去。本文的创新点有两个,一个是提出了一个GCN用来提取大规模的点云特征,另一个是提出了一个基于点的多视角一致性损失。模型结构可以看到,这里模型分为了三个大步骤,构建点云,基于点云的风格迁移,渲染。构建点云模型中输入的就是一张2D图,作者先使用L
原创
发布博客 2022.04.14 ·
3648 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

[ICCV2021]Learning to Stylize Novel Views

本文做的是基于新视角生成的风格转换。其中的一大难点是如何保证转换风格后不同视角之间的3D统一性。整体模型是基于点云的,作者先将输入的一系列图像转换成点云,然后将点云按照目标风格图像的特征进行转换,最后基于转换后的点云进行渲染,从而得到新视角生成的风格转换图。模型结构模型流程如上图所示,主要分为三个步骤:提取点云,点云转换,新视角生成。提取点云这里作者使用了SFM算法提取了输入图像的深度,这样就可以将图像中的点一一对应到空间中了。然后使用VGG-19抽取了基于每个像素的特征,放置于点云里每
原创
发布博客 2022.04.14 ·
3372 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[ICCV2021]3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations

本文做的是基于3D物体的风格迁移。与之前模型不同的是,他可以同时迁移纹理和几何形状。由于样本不足,本文是将纹理和几何形状的风格迁移单独训练的。几何部分所谓的逻辑就是每个语义分割部位的相对大小,而纹理的风格迁移就遵循了之前工作中的定义。模型结构整体网络分为三个部分,纹理迁移,几何迁移和最后的3D空间中的优化阶段。几何迁移这里作者认为几何上风格的不同主要取决于局部的大小,比如动漫里通常头部比较大,而真实场景中头部偏小。因此作者将输入的3D模型分解成固定个数的语意块,并将每个语意块映射到一个椭
原创
发布博客 2022.04.14 ·
1028 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[ECCV2020]Self-supervised Single-view 3D Reconstruction via Semantic Consistency

本文做的是基于单图的无监督3D物体重建。文中模型不需要配对的2D图像与3D扫描结果,不需要landmark,不需要多视角图像,也不需要参数化模型,更不需要手工定义的模板,完全从零开始重建一个3D物体。只有一个约束,就是输入的所有图片需要是同一类物体(比如全是车,全是鸟,或者全是马等等)。本文主要的思想是将同一类物体通过语义分割建立联系,通过3D模板(初始模板就是一个球)与语义分割模型相互之间的促进来迭代式的增强模型的重建能力。...
原创
发布博客 2022.04.14 ·
875 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[ECCV2022]3D face reconstruction with dense landmarks

本文做的是基于单图的3D人脸重建。与之前方式不同的是,本文只使用了提取的密集landmark作为模型约束,甚至没有用基于图像的渲染重建损失,但效果却达到了SOTA。本文为后续的工作提供了一个非常好的思路,那就是直接使用基于计算机图形学生成的人脸进行训练。这样的好处是我们拥有绝对准确的ground truth,比如文中使用的landmark,而这是我们在真实数据库上无法达到的(比如被遮挡部分的landmark,即使非常用心,人工也难以准确标注)。且由于现阶段计算机图形学生成的结果的真实性和细腻度都要远远高于计
原创
发布博客 2022.04.12 ·
6733 阅读 ·
25 点赞 ·
3 评论 ·
33 收藏

[CVPR2022]ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural Representations

本文的主要目的是为3D人脸模型创建一套基于SDF的非线性隐式表示,这有助于帮我们摆脱线性3DMM的局限性(比如网格密度有限导致不够精细,又比如线性表达无法囊括一些比较特殊的人脸及表情)。和别的隐式表示一样,输入模型的只有一个点,输出的是对应的SDF值,整个模型就可以想象成一个表示人脸的场,我们输入一个点就给我们一点信息,当输入点足够多的时候自然就能获得最终的3D重建结果了。而如何解析我们输入的这个点便是模型的重中之重,本文便将这个流程分为了三个部分:表情形变,身份形变和模板空间。通过对表情和身份的解耦来增强
原创
发布博客 2022.04.12 ·
1391 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

[CVPR2022]Sparse to Dense Dynamic 3D Facial Expression Generation

本文主要做的是基于人脸网格的表情动画合成。思路是先用一个conditional GAN来学习基于landmark的动画序列,然后将landmark序列输入解码器还原为稠密的人脸网格动画。作者做这篇文章的灵感是来源于“每个人在做表情时的肌肉运动是一致的”,因此作者试图学习出一套通用的运动模板,然后套用到每个个体身上,进而让每个人在面部特征不变的情况下产生表情动画。特色主要在于对landmark的动画序列使用了基于SRVF的轨迹表示(这个其实是借鉴MotionGAN的,这里作者只是把他从2D改成了3D),和
原创
发布博客 2022.04.11 ·
1277 阅读 ·
5 点赞 ·
4 评论 ·
6 收藏
加载更多