探索高效骨架动作识别的未来——SGN框架
SGN 项目地址: https://gitcode.com/gh_mirrors/sgn/SGN
项目简介
在人类行为识别领域,基于骨架数据的研究因其易于获取而备受关注。最近,深度前馈神经网络被广泛应用于3D关节坐标的建模,然而这并未充分考虑计算效率问题。Semantics-Guided Neural Networks(SGN) 是一项创新性的研究,它引入了关节类型和帧索引等高层次语义信息,提高了特征表示的能力,同时利用层次结构模型关节之间的关系,以更小的模型规模实现了卓越的性能。
图1显示了与先前方法相比,SGN在NTU60(交叉场景设置)中的准确度和参数数量的对比。SGN以显著更小的模型尺寸,实现了最优的识别效果。
技术分析
SGN框架如图2所示,由关节级模块和帧级模块组成。动态表示(DR)通过融合关节的位置和速度信息来学习关节的动力学特性。两种类型的语义——关节类型和帧索引,分别被融入到这两个模块中。通过三个GCN层来建模关节级别的依赖,而通过两个CNN层来建模帧间的依赖。
应用场景
SGN适用于各种需要高效且准确的人体动作识别的场合,如智能安防监控、体育赛事分析、虚拟现实交互等。在实时视频流处理中,它可以快速、准确地识别出人的动作,提供及时的反馈和决策支持。
项目特点
- 高效性:SGN凭借其精巧的设计,在保证高识别精度的同时,大大减少了计算资源的需求。
- 语义引导:通过引入关节类型和帧索引的语义信息,增强了模型对动作结构的理解,从而提升识别准确率。
- 层次建模:关节级和帧级模块并行工作,有效捕获了时空信息,展现出强大的表达能力。
- 易用性:基于Python和PyTorch实现,代码清晰,便于理解和扩展。
使用指南
该项目提供了详细的数据准备、训练和测试步骤,确保用户能够轻松上手。只需安装必要的Python库(包括Python 3.6、Anaconda和PyTorch 1.3),下载NTU60 RGB+D 数据集,即可开始您的旅程。
如果您发现该项目对您有所帮助,请引用相关的学术论文,支持我们的研究。
一起探索SGN,开启高效骨架动作识别的新篇章!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考