NNoM (神经网络于微控制器上): 开源项目安装及使用指南

NNoM (神经网络于微控制器上): 开源项目安装及使用指南

项目地址:https://gitcode.com/gh_mirrors/nn/nnom

一、项目介绍

1.1 简介

NNoM(Neural Network on Microcontroller)是一款专为嵌入式微控制器(MCU)设计的高级推理神经网络库。它旨在帮助开发者轻松地将深度学习模型部署到资源受限的设备上。

1.2 特点

  • 快速开发: 支持一键转化Keras模型至NNoM模型。
  • 复杂架构支持: 兼容Inception、ResNet、DenseNet等多种复杂网络结构。
  • 多平台兼容性: 支持32位/64位MCU或个人计算机(PC),并兼容Python环境。
  • 详细文档: 提供丰富的使用指导和示例代码。

二、项目快速启动

2.1 环境准备

确保你的系统中已安装Python和TensorFlow,且TensorFlow版本低于等于2.14。

安装TensorFlow(以CPU版本为例)
pip install 'tensorflow-cpu<=2.14.1'

2.2 安装NNoM

通过Python的包管理器pip来安装NNoM:

pip install git+https://github.com/majianjia/nnom.git

2.3 编译和测试

NNoM的C语言头文件和源代码位于nnom_corePython包内。你可以通过以下命令找到其位置并进行编译测试:

import os
os.environ["NNOM_HOME"] = "/path/to/nnom_core"

具体编译步骤可能因项目配置而异,建议参考NNoM的官方文档获取详细的编译指导。

三、应用案例和最佳实践

实践一: 部署Keras模型至微控制器

NNoM最突出的优点之一就是能够迅速将Keras模型转化为可在微控制器上执行的形式。例如,假定你有一个已训练好的Keras模型:

from tensorflow.keras.models import load_model
model = load_model('my_keras_model.h5')

使用NNoM将其转化为微控制器友好的形式只需一行代码:

from nnom.converter import convert_to_nnom
convert_to_nnom(model, input_shape=(None, None, 1), output_folder='my_nnom_model')

随后,将生成的C代码集成进你的微控制器项目即可运行。

最佳实践

  • 在模型转换过程中检查量化误差,以保证模型精度损失最小。
  • 利用NNoM提供的评估工具,如内存消耗分析、时间性能测试等功能,进行模型优化调整。

四、典型生态项目

RT-Thread与NNoM的结合

RT-Thread是一款高效率的实时操作系统,常用于各种嵌入式场景。NNoM与RT-Thread相结合可以发挥强大的边缘计算能力,使智能应用更高效地运行于资源有限的硬件平台上。

其他生态系统中的集成

NNoM的设计理念使其不仅限于单一领域应用。无论是在工业自动化、智能家居还是物联网(IoT)项目中,只要涉及到对轻量级推理需求的应用场景,NNoM都能成为首选解决方案。

总之,NNoM凭借其易用性和高效性,已经成为微控制器领域深度学习模型部署的重要工具,其广泛的应用前景令人期待。

nnom A higher-level Neural Network library for microcontrollers. nnom 项目地址: https://gitcode.com/gh_mirrors/nn/nnom

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟苹星Trustworthy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值