探索超算新时代:高效分布式GPU编程教程(SC23 Tutorial)

探索超算新时代:高效分布式GPU编程教程(SC23 Tutorial)

tutorial-multi-gpuEfficient Distributed GPU Programming for Exascale, an SC/ISC Tutorial项目地址:https://gitcode.com/gh_mirrors/tu/tutorial-multi-gpu

在当前的高性能计算领域,GPU正日益成为实现海量数据处理的关键力量。SC23 Tutorial 提供了一套独特的资源,即“Efficient Distributed GPU Programming for Exascale”,这个开源项目旨在帮助开发者掌握如何在exascale级别下进行高效的GPU编程。该项目源自即将到来的SC23超级计算机大会上的同名实战教程。

项目介绍

这是一个互动式的教学平台,由经验丰富的专家团队设计和指导,包括来自SNL的Simon Garcia,JSC的Andreas Herten,NVIDIA的Markus Hrywniak和Jiri Kraus,以及Hagen大学的Lena Oden。教程包含了理论讲座和实践操作,以一个Jacobi解算器为例,来深入学习多GPU并行编程。

项目技术分析

本教程涵盖了多个关键主题:

  1. MPI-distributed Computing with GPUs:讲解如何利用MPI进行GPU间的通信。
  2. Performance / Debugging Tools:介绍NVIDIA Nsight Systems等工具,用于性能监控和调试。
  3. NCCL和NVSHMEM:探讨这些优化库在加速通信中的作用。
  4. Device-Initiated Communication:研究设备启动的通信模式,提升效率。

通过这些技术,开发者可以充分利用GPU的潜力,实现高性能的分布式计算。

项目及技术应用场景

无论是科学仿真、数据分析、机器学习还是深度学习,该教程提供的技能都至关重要。在大型数据中心或超算中心,借助于高效的GPU编程模型,可以显著提升大规模并行计算的效率,解决复杂的计算问题。

项目特点

  • 实践导向:结合理论讲座与动手实验,确保学习者能够理论联系实际,加深理解。
  • 实时环境:提供Jupyter实例,让开发者可以在真实的HPC环境中进行学习。
  • 工具集成:引入NVIDIA的专业工具,如Nsight Systems,助力性能调优。
  • 全面覆盖:从基础的MPI到高级的设备发起通信,教程覆盖了多GPU应用开发的各个方面。

如果你对驾驭exascale级别的计算挑战感兴趣,或者想要提升你的分布式GPU编程技能,那么这个开源项目无疑是理想的选择。立即加入SC23的在线社区,开启你的GPU编程之旅吧!

DOI Repository | SC23大会 | JuDoor注册

tutorial-multi-gpuEfficient Distributed GPU Programming for Exascale, an SC/ISC Tutorial项目地址:https://gitcode.com/gh_mirrors/tu/tutorial-multi-gpu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房耿园Hartley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值