探索未来游戏智能:MindMaker AI 插件为Unreal Engine 4 & 5注入机器学习灵魂
去发现同类优质开源项目:https://gitcode.com/
视频演示:
在Unreal Engine 4和5的游戏中创造机器学习AI代理现在变得简单,这就是【MindMaker AI插件】的魅力所在。这是一个开源插件,将你的游戏环境转变为OpenAI Gym环境,用于训练自主的机器学习代理。通过网络连接,插件允许Unreal Engine项目与Python ML库交换数据,将数据转化为自定义的OpenAI Gym环境进行训练。
该插件不仅限于游戏设计,其应用场景广泛,包括机器人模拟、自动驾驶、生成式建筑设计、程序化图形等多个科学和技术领域。无论你是游戏开发者还是研究人员,都可以利用MindMaker轻松训练适用于2D、3D和VR项目的机器学习代理。
内置的DRL学习引擎提供了一系列深度强化学习算法,如A2C、ACER、ACKTR、DQN、PPO、SAC、TD3、TRPO和DDPG。与Unity的ML代理类似,但更为灵活——你可以选择暴露给ML算法的代理观察和动作,而无需为每个应用创建单独的OpenAI Gym环境。
示例与教程
- 下载 完整示例项目文件和Python源代码。
- CartPole任务:创建自定义强化学习环境[YouTube演示视频]
- 自动化内容创建与A/B测试:使用玩家生成的强化学习信号实现自动化内容创建[YouTube演示视频]
- 自动化股票交易:在Unreal Engine 4中构建基于深度强化学习的比特币机器人
功能亮点
- 使用MindMaker客户端服务器文件在Unreal Engine中直接实施多种基于Python的ML库
- 预编译的Deep Reinforcement Learning包,适用于生产场景
- 包含完整API示例的项目文件
- 自定义学习参数,如网络层数、批处理大小、学习率、gamma、探索/利用权衡等
- 在对抗性场景中训练代理的自我播放机制
- 支持多种预装的深度强化学习算法(部分算法仅在UE4或UE5版本中可用)
组件
主要组件包括一个包含学习环境的Unreal Engine项目,以及代理用于优化学习的独立机器学习库。学习库可以是使用MindMaker远程ML服务器定制的Python脚本,也可以是预编译的MindMaker DRL Engine。
MindMaker 远程ML客户端/服务器
使用MindMaker远程ML服务器,可以尝试结合MindMaker使用不同的ML库。步骤如下:
- 下载并安装免费的MindMaker AI插件,它提供了与远程Python学习引擎连接所需的Socket IO连接。
- 下载DRL示例项目,其中包括MindMaker远程服务器应用程序和源代码。
- 启动UE示例项目,并配置SocketIO组件以连接到远程服务器。
- 修改或替换Python客户端,以便使用您选择的机器学习库。
多智能体强化学习(MARL)
通过MindMaker插件和服务器,您可以支持多个ML客户端连接到同一学习环境,例如在多智能体场景中。只需按照示例蓝图设置学习代理,为每个新代理递增SocketIO端口设置即可。
如此一来,MindMaker AI插件 就成为了游戏开发和科研的强大工具,它简化了机器学习集成过程,让人工智能的力量在游戏和更多领域中大放异彩。现在就加入我们,开启你的机器学习之旅吧!
去发现同类优质开源项目:https://gitcode.com/