SwinTransformer MIM 深度估计项目教程
1. 项目的目录结构及介绍
MIM-Depth-Estimation/
├── configs/
│ ├── default.yaml
│ └── ...
├── data/
│ ├── README.md
│ └── ...
├── models/
│ ├── __init__.py
│ └── ...
├── scripts/
│ ├── train.py
│ ├── test.py
│ └── ...
├── src/
│ ├── __init__.py
│ └── ...
├── README.md
├── requirements.txt
└── setup.py
- configs/: 存放项目的配置文件,如
default.yaml
。 - data/: 存放数据集相关文件和说明文档。
- models/: 存放模型的定义和实现代码。
- scripts/: 存放项目的启动脚本,如训练脚本
train.py
和测试脚本test.py
。 - src/: 存放项目的核心代码。
- README.md: 项目的说明文档。
- requirements.txt: 项目的依赖库列表。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
scripts/train.py
train.py
是项目的训练脚本,用于启动模型的训练过程。它通常会读取配置文件中的参数,加载数据集,初始化模型,并开始训练。
scripts/test.py
test.py
是项目的测试脚本,用于评估训练好的模型在测试集上的表现。它会加载训练好的模型权重,并输出评估结果。
3. 项目的配置文件介绍
configs/default.yaml
default.yaml
是项目的默认配置文件,包含了训练和测试过程中所需的各项参数设置,如数据路径、模型参数、优化器参数等。配置文件通常以 YAML 格式编写,便于阅读和修改。
# 示例配置文件内容
data:
train_path: "data/train"
test_path: "data/test"
model:
name: "SwinTransformer"
params:
num_layers: 12
hidden_size: 768
optimizer:
name: "Adam"
learning_rate: 0.001
通过修改配置文件中的参数,可以调整模型的训练和测试行为。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考