SwinTransformer MIM 深度估计项目教程

SwinTransformer MIM 深度估计项目教程

MIM-Depth-Estimation This is an official implementation of our CVPR 2023 paper "Revealing the Dark Secrets of Masked Image Modeling" on Depth Estimation. MIM-Depth-Estimation 项目地址: https://gitcode.com/gh_mirrors/mi/MIM-Depth-Estimation

1. 项目的目录结构及介绍

MIM-Depth-Estimation/
├── configs/
│   ├── default.yaml
│   └── ...
├── data/
│   ├── README.md
│   └── ...
├── models/
│   ├── __init__.py
│   └── ...
├── scripts/
│   ├── train.py
│   ├── test.py
│   └── ...
├── src/
│   ├── __init__.py
│   └── ...
├── README.md
├── requirements.txt
└── setup.py
  • configs/: 存放项目的配置文件,如 default.yaml
  • data/: 存放数据集相关文件和说明文档。
  • models/: 存放模型的定义和实现代码。
  • scripts/: 存放项目的启动脚本,如训练脚本 train.py 和测试脚本 test.py
  • src/: 存放项目的核心代码。
  • README.md: 项目的说明文档。
  • requirements.txt: 项目的依赖库列表。
  • setup.py: 项目的安装脚本。

2. 项目的启动文件介绍

scripts/train.py

train.py 是项目的训练脚本,用于启动模型的训练过程。它通常会读取配置文件中的参数,加载数据集,初始化模型,并开始训练。

scripts/test.py

test.py 是项目的测试脚本,用于评估训练好的模型在测试集上的表现。它会加载训练好的模型权重,并输出评估结果。

3. 项目的配置文件介绍

configs/default.yaml

default.yaml 是项目的默认配置文件,包含了训练和测试过程中所需的各项参数设置,如数据路径、模型参数、优化器参数等。配置文件通常以 YAML 格式编写,便于阅读和修改。

# 示例配置文件内容
data:
  train_path: "data/train"
  test_path: "data/test"

model:
  name: "SwinTransformer"
  params:
    num_layers: 12
    hidden_size: 768

optimizer:
  name: "Adam"
  learning_rate: 0.001

通过修改配置文件中的参数,可以调整模型的训练和测试行为。

MIM-Depth-Estimation This is an official implementation of our CVPR 2023 paper "Revealing the Dark Secrets of Masked Image Modeling" on Depth Estimation. MIM-Depth-Estimation 项目地址: https://gitcode.com/gh_mirrors/mi/MIM-Depth-Estimation

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋溪普Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值