VGGT: 视觉几何定位变换器

VGGT: 视觉几何定位变换器

vggt VGGT Visual Geometry Grounded Transformer vggt 项目地址: https://gitcode.com/gh_mirrors/vg/vggt

1. 项目介绍

VGGT(Visual Geometry Grounded Transformer)是一个由Facebook Research团队开发的神经网络模型。该模型可以从一个或多个视角的图像中,快速推断出场景的所有关键三维属性,包括外参和内参相机参数、点图、深度图以及三维点轨迹。VGGT的设计旨在处理从单张图像到数百张图像的场景重建任务,且能够在几秒钟内完成。

2. 项目快速启动

在开始使用VGGT之前,你需要确保你的环境中已经安装了以下依赖项:torch、torchvision、numpy、Pillow和huggingface_hub。

首先,克隆这个仓库到你的本地机器:

git clone git@github.com:facebookresearch/vggt.git
cd vggt

然后,安装项目依赖:

pip install -r requirements.txt

接下来,你可以通过以下代码来初始化模型并加载预训练权重:

import torch
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.get_device_capability(0)[0] >= 8 else torch.float16

model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)

# 加载并预处理示例图像(替换为你的图像路径)
image_names = ["path/to/imageA.png", "path/to/imageB.png", "path/to/imageC.png"]
images = load_and_preprocess_images(image_names).to(device)

with torch.no_grad():
    with torch.cuda.amp.autocast(dtype=dtype):
        # 预测包括相机、深度图和点图在内的属性
        predictions = model(images)

模型权重将自动从Hugging Face下载。如果你遇到加载缓慢的问题,可以手动下载权重文件并加载。

3. 应用案例和最佳实践

VGGT模型可以用于多种场景重建和视觉几何理解的任务。以下是一些应用案例和最佳实践:

  • 单视角重建:尽管VGGT没有专门针对单视角重建进行训练,但它在单个视角图像的3D结构推断上表现出色。
  • 多视角重建:使用多个视角的图像进行更准确的场景重建。
  • 视觉跟踪:通过模型中的跟踪头,可以对场景中的点进行跟踪。

在使用VGGT时,可以创建简单的掩码来排除输入帧中的不想要的部分,如反光表面、天空或水。

4. 典型生态项目

VGGT的生态系统中,有一些项目可以与之配合使用,以增强其功能和用户体验:

  • Gradio Web Interface:通过Gradio,可以创建一个交互式的Web界面,允许用户上传图像或视频,运行重建,并在浏览器中互动地探索3D场景。
  • Viser 3D Viewer:使用Viser,可以在本地机器上运行重建并可视化点云。

通过上述介绍,你可以开始探索和使用VGGT来处理你的视觉几何理解任务。

vggt VGGT Visual Geometry Grounded Transformer vggt 项目地址: https://gitcode.com/gh_mirrors/vg/vggt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

庞锦宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值