IGMC 项目使用教程

IGMC 项目使用教程

IGMC Inductive graph-based matrix completion (IGMC) from "M. Zhang and Y. Chen, Inductive Matrix Completion Based on Graph Neural Networks, ICLR 2020 spotlight". 项目地址: https://gitcode.com/gh_mirrors/ig/IGMC

1. 项目的目录结构及介绍

IGMC 项目的目录结构如下:

IGMC/
├── data_utils.py
├── models.py
├── preprocessing.py
├── run_fdy.sh
├── run_transfer_exps.sh
├── summarize_fdy.py
├── train_eval.py
├── util_functions.py
├── Main.py
├── README.md
├── LICENSE
├── overall2.svg
└── raw_data/
    └── ...

目录结构介绍

  • data_utils.py: 数据处理工具文件,包含数据加载和预处理的函数。
  • models.py: 模型定义文件,包含图神经网络模型的实现。
  • preprocessing.py: 数据预处理文件,包含数据清洗和转换的函数。
  • run_fdy.sh: 运行实验的脚本文件。
  • run_transfer_exps.sh: 运行迁移学习实验的脚本文件。
  • summarize_fdy.py: 实验结果汇总文件。
  • train_eval.py: 训练和评估模型的文件。
  • util_functions.py: 工具函数文件,包含一些辅助函数。
  • Main.py: 项目的主启动文件。
  • README.md: 项目说明文件,包含项目的基本信息和使用说明。
  • LICENSE: 项目许可证文件。
  • overall2.svg: 项目结构图文件。
  • raw_data/: 原始数据目录,包含项目使用的原始数据文件。

2. 项目的启动文件介绍

Main.py

Main.py 是 IGMC 项目的主启动文件。它负责加载数据、初始化模型、进行训练和评估等操作。以下是该文件的主要功能:

  • 数据加载: 从指定数据集中加载数据。
  • 模型初始化: 初始化图神经网络模型。
  • 训练: 使用加载的数据对模型进行训练。
  • 评估: 在训练完成后对模型进行评估。
  • 保存结果: 将训练和评估的结果保存到指定目录。

使用方法

python Main.py --data-name ml_100k --epochs 80 --max-nodes-per-hop 200 --testing --ensemble --dynamic-train
  • --data-name: 指定数据集名称,如 ml_100k
  • --epochs: 指定训练的轮数。
  • --max-nodes-per-hop: 指定每个节点在子图提取时的最大邻居数。
  • --testing: 启用测试模式。
  • --ensemble: 启用集成学习。
  • --dynamic-train: 动态生成训练数据。

3. 项目的配置文件介绍

IGMC 项目没有明确的配置文件,但可以通过命令行参数进行配置。以下是一些常用的配置参数:

数据集配置

  • --data-name: 指定数据集名称,如 ml_100kml_1m 等。
  • --ratio: 指定数据集的稀疏度,如 --ratio 0.2 表示只保留 20% 的评分数据。

训练配置

  • --epochs: 指定训练的轮数。
  • --batch-size: 指定批处理大小。
  • --lr: 指定学习率。
  • --lr-decay-step-size: 指定学习率衰减步长。
  • --adj-dropout: 指定邻接矩阵的 dropout 率。

其他配置

  • --save-appendix: 指定保存结果的附加名称。
  • --data-appendix: 指定数据集的附加名称。
  • --dynamic-train: 动态生成训练数据。
  • --dynamic-test: 动态生成测试数据。

通过这些配置参数,用户可以根据自己的需求调整模型的训练和评估过程。

IGMC Inductive graph-based matrix completion (IGMC) from "M. Zhang and Y. Chen, Inductive Matrix Completion Based on Graph Neural Networks, ICLR 2020 spotlight". 项目地址: https://gitcode.com/gh_mirrors/ig/IGMC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯深业Dorian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值