Google Landmark Retrieval 2021 2nd Place Solution 使用教程
1. 项目介绍
本项目是2021年Google Landmark Retrieval竞赛的第二名解决方案。该项目主要用于地标图像的检索任务,通过深度学习模型对图像进行特征提取和匹配,从而实现高效的地标图像检索。项目使用了多种先进的深度学习模型,如ResNeXt101ibn、SEResNet101ibn等,并结合了多阶段的训练和推理策略,以达到最佳的检索效果。
2. 项目快速启动
环境准备
- 使用CUDA 11.1、Python 3.7、PyTorch 1.9.1和Torchvision 0.8.1进行训练和测试。
- 下载ImageNet预训练模型ResNeXt101ibn和SEResNet101ibn。
- 从官方网站下载GLDv2完整版本数据集。
数据准备
- 运行
python tools/generate_gld_list.py
生成训练数据列表。 - 验证数据来自GLDv2中的1129张图像。
快速训练
- 使用8个GPU进行训练。
- 快速训练脚本(适用于R50_256模型):
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/R50_256.yml
完整训练流程
- 使用SER101ibn骨干网络的完整训练流程:
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384.yml python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384_finetune.yml python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_finetune.yml python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_all.yml
推理
- 修改
submission/code/landmark_retrieval.py
中的设置。 - 运行
eval_retrieval.sh
生成提交文件并在验证集上进行离线评估。
3. 应用案例和最佳实践
应用案例
- 地标识别与检索:该项目可用于地标图像的识别和检索,适用于旅游、地理信息系统等领域。
- 图像检索系统:可以作为图像检索系统的基础模型,应用于电商、社交媒体等场景。
最佳实践
- 多阶段训练:通过多阶段的训练策略,逐步优化模型性能。
- 特征提取与匹配:使用先进的深度学习模型进行特征提取和匹配,提高检索精度。
- 离线评估:在验证集上进行离线评估,确保模型性能的稳定性。
4. 典型生态项目
相关项目
- AICITY2021_Track2_DMT:与本项目类似,用于图像识别和检索任务。
- 2020_1st_recognition_solution:2020年图像识别竞赛的冠军解决方案,提供了丰富的图像识别技术。
- 2020_2nd_recognition_solution:2020年图像识别竞赛的亚军解决方案,与本项目有相似的技术路线。
生态项目
- PyTorch:本项目使用的深度学习框架,提供了丰富的工具和库支持。
- Torchvision:与PyTorch配套的计算机视觉库,提供了常用的图像处理和模型实现。
- CUDA:NVIDIA提供的并行计算平台和API,加速深度学习模型的训练和推理。
通过以上模块的介绍,您可以快速了解并使用本项目进行地标图像的检索任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考