Google Landmark Retrieval 2021 2nd Place Solution 使用教程

Google Landmark Retrieval 2021 2nd Place Solution 使用教程

Google_Landmark_Retrieval_2021_2nd_Place_Solution 项目地址: https://gitcode.com/gh_mirrors/go/Google_Landmark_Retrieval_2021_2nd_Place_Solution

1. 项目介绍

本项目是2021年Google Landmark Retrieval竞赛的第二名解决方案。该项目主要用于地标图像的检索任务,通过深度学习模型对图像进行特征提取和匹配,从而实现高效的地标图像检索。项目使用了多种先进的深度学习模型,如ResNeXt101ibn、SEResNet101ibn等,并结合了多阶段的训练和推理策略,以达到最佳的检索效果。

2. 项目快速启动

环境准备

  • 使用CUDA 11.1、Python 3.7、PyTorch 1.9.1和Torchvision 0.8.1进行训练和测试。
  • 下载ImageNet预训练模型ResNeXt101ibn和SEResNet101ibn。
  • 从官方网站下载GLDv2完整版本数据集。

数据准备

  • 运行python tools/generate_gld_list.py生成训练数据列表。
  • 验证数据来自GLDv2中的1129张图像。

快速训练

  • 使用8个GPU进行训练。
  • 快速训练脚本(适用于R50_256模型):
    python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/R50_256.yml
    

完整训练流程

  • 使用SER101ibn骨干网络的完整训练流程:
    python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384.yml
    python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384_finetune.yml
    python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_finetune.yml
    python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_all.yml
    

推理

  • 修改submission/code/landmark_retrieval.py中的设置。
  • 运行eval_retrieval.sh生成提交文件并在验证集上进行离线评估。

3. 应用案例和最佳实践

应用案例

  • 地标识别与检索:该项目可用于地标图像的识别和检索,适用于旅游、地理信息系统等领域。
  • 图像检索系统:可以作为图像检索系统的基础模型,应用于电商、社交媒体等场景。

最佳实践

  • 多阶段训练:通过多阶段的训练策略,逐步优化模型性能。
  • 特征提取与匹配:使用先进的深度学习模型进行特征提取和匹配,提高检索精度。
  • 离线评估:在验证集上进行离线评估,确保模型性能的稳定性。

4. 典型生态项目

相关项目

  • AICITY2021_Track2_DMT:与本项目类似,用于图像识别和检索任务。
  • 2020_1st_recognition_solution:2020年图像识别竞赛的冠军解决方案,提供了丰富的图像识别技术。
  • 2020_2nd_recognition_solution:2020年图像识别竞赛的亚军解决方案,与本项目有相似的技术路线。

生态项目

  • PyTorch:本项目使用的深度学习框架,提供了丰富的工具和库支持。
  • Torchvision:与PyTorch配套的计算机视觉库,提供了常用的图像处理和模型实现。
  • CUDA:NVIDIA提供的并行计算平台和API,加速深度学习模型的训练和推理。

通过以上模块的介绍,您可以快速了解并使用本项目进行地标图像的检索任务。

Google_Landmark_Retrieval_2021_2nd_Place_Solution 项目地址: https://gitcode.com/gh_mirrors/go/Google_Landmark_Retrieval_2021_2nd_Place_Solution

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯深业Dorian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值