DeepLogo: 基于TensorFlow对象检测API的品牌logo识别系统教程

DeepLogo: 基于TensorFlow对象检测API的品牌logo识别系统教程

DeepLogo A brand logo detection system using tensorflow object detection API. 项目地址: https://gitcode.com/gh_mirrors/de/DeepLogo


项目介绍

DeepLogo是一个利用TensorFlow对象检测API开发的品牌logo识别系统。它提供了一个训练和评估环境,使开发者能够创建自定义的logo检测模型。该系统基于SSD(Single Shot MultiBox Detector)作为骨干网络,并通过微调TensorFlow Models库中发布的预训练SSD模型来实现。DeepLogo支持使用Flickr Logos 27数据集进行培训,涵盖了27个品牌的logo图像。

项目快速启动

环境准备

确保你的环境中安装了TensorFlow(注意:本项目不兼容TensorFlow 2.0及以上版本)。首先,克隆DeepLogo仓库:

git clone https://github.com/satojkovic/DeepLogo.git
cd DeepLogo

接下来,下载预训练模型和Flickr Logos 27数据集到相应目录。由于版权原因,这里仅示例流程,实际下载需根据原链接操作。

数据预处理与TFRecord生成

执行预处理脚本来清理并转换标注文件,然后生成TFRecord文件:

python preproc_annot.py
python gen_tfrecord.py --train_or_test train --csv_input flickr_logos_27_dataset/flickr_logos_27_dataset_training_set_annotation_cropped.txt --img_dir flickr_logos_27_dataset/flickr_logos_27_dataset_images --output_path train.record
python gen_tfrecord.py --train_or_test test --csv_input flickr_logos_27_dataset/flickr_logos_27_dataset_test_set_annotation_cropped.txt --img_dir flickr_logos_27_dataset/flickr_logos_27_dataset_images --output_path test.record

设置TensorFlow Object Detection API路径,并开始训练:

# 假设已经正确设置了tensorflow/models/research路径
ln -s <path_to_tensorflow_models>/research/object_detection/ssd_inception_v2_coco_2018_01_28 ssd_inception_v2_coco_2018_01_28
python <path_to_tensorflow_models>/research/object_detection/legacy/train.py --logtostderr --pipeline_config_path=ssd_inception_v2_coco.config --train_dir=training

应用案例和最佳实践

一旦模型训练完成,你可以将其导出用于推断,测试模型的性能,并在真实场景下部署。这涉及到导出模型、运行推断以及可能的模型优化步骤。

导出模型

python <path_to_tensorflow_models>/research/export_inference_graph.py --input_type=image_tensor --pipeline_config_path=ssd_inception_v2_coco.config --trained_checkpoint_prefix=model.ckpt-{你的最后一步} --output_directory=logos_inference_graph

测试与评估

运行以下命令对模型进行推断,并查看结果:

python logo_detection.py --model_name logos_inference_graph --label_map flickr_logos_27_label_map.pbtxt --test_annot_text flickr_logos_27_dataset/flickr_logos_27_dataset_test_set_annotation_cropped.txt --test_image_dir flickr_logos_27_dataset/flickr_logos_27_dataset_images --output_dir detect_results

对于更深入的性能分析,使用TensorBoard查看评估结果:

tensorboard --logdir=eval/

典型生态项目

虽然本指南专注于DeepLogo本身,但值得注意的是,随着技术进步,类似DETR这样的Transformer模型也被整合到品牌logo识别中,例如项目DeepLogo2,它采用了DETR框架,并且进一步推进了logo检测的边界。然而,具体实践其生态项目时,开发者需参考各自最新的文档和指导。


以上就是使用DeepLogo进行品牌logo识别的基本教程,包括从环境搭建、数据准备到模型训练和应用的一系列步骤。希望本教程能帮助您快速上手并拓展您的机器学习应用。

DeepLogo A brand logo detection system using tensorflow object detection API. 项目地址: https://gitcode.com/gh_mirrors/de/DeepLogo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬如雅Brina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值