开源项目教程:遥感图像语义分割

开源项目教程:遥感图像语义分割

Semantic-segmentation-of-remote-sensing-images遥感图像的语义分割,基于深度学习,在Tensorflow框架下,利用TF.Keras,运行环境TF2.0+项目地址:https://gitcode.com/gh_mirrors/se/Semantic-segmentation-of-remote-sensing-images

1. 项目的目录结构及介绍

Semantic-segmentation-of-remote-sensing-images/
├── data/
│   ├── processed/
│   └── raw/
├── models/
│   ├── base_model.py
│   └── custom_model.py
├── utils/
│   ├── data_loader.py
│   └── preprocessing.py
├── config/
│   ├── default_config.yaml
│   └── custom_config.yaml
├── main.py
├── README.md
└── requirements.txt
  • data/: 存储数据集的目录,包括原始数据和处理后的数据。
  • models/: 包含模型的定义文件,如基础模型和自定义模型。
  • utils/: 包含数据加载和预处理的实用工具。
  • config/: 配置文件目录,包括默认配置和自定义配置。
  • main.py: 项目的主启动文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖的Python库列表。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责初始化配置、加载数据、训练模型和评估模型。以下是 main.py 的主要功能模块:

import config.default_config as config
from utils.data_loader import load_data
from models.custom_model import CustomModel

def main():
    # 加载配置
    cfg = config.load_config()
    
    # 加载数据
    train_data, val_data = load_data(cfg)
    
    # 初始化模型
    model = CustomModel(cfg)
    
    # 训练模型
    model.train(train_data, val_data)
    
    # 评估模型
    model.evaluate(val_data)

if __name__ == "__main__":
    main()

3. 项目的配置文件介绍

配置文件位于 config/ 目录下,主要包括 default_config.yamlcustom_config.yaml

default_config.yaml

data:
  path: "data/processed/"
  batch_size: 32
  num_workers: 4

model:
  input_channels: 3
  num_classes: 21
  learning_rate: 0.001
  epochs: 50

train:
  checkpoint_path: "checkpoints/"
  log_interval: 10

custom_config.yaml

data:
  path: "data/custom_processed/"
  batch_size: 16
  num_workers: 2

model:
  input_channels: 4
  num_classes: 10
  learning_rate: 0.0005
  epochs: 100

train:
  checkpoint_path: "custom_checkpoints/"
  log_interval: 20

配置文件主要包含数据路径、模型参数、训练参数等配置项,用户可以根据需要修改 custom_config.yaml 以适应不同的数据集和训练需求。

Semantic-segmentation-of-remote-sensing-images遥感图像的语义分割,基于深度学习,在Tensorflow框架下,利用TF.Keras,运行环境TF2.0+项目地址:https://gitcode.com/gh_mirrors/se/Semantic-segmentation-of-remote-sensing-images

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程倩星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值