开源项目教程:遥感图像语义分割
1. 项目的目录结构及介绍
Semantic-segmentation-of-remote-sensing-images/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── base_model.py
│ └── custom_model.py
├── utils/
│ ├── data_loader.py
│ └── preprocessing.py
├── config/
│ ├── default_config.yaml
│ └── custom_config.yaml
├── main.py
├── README.md
└── requirements.txt
- data/: 存储数据集的目录,包括原始数据和处理后的数据。
- models/: 包含模型的定义文件,如基础模型和自定义模型。
- utils/: 包含数据加载和预处理的实用工具。
- config/: 配置文件目录,包括默认配置和自定义配置。
- main.py: 项目的主启动文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖的Python库列表。
2. 项目的启动文件介绍
main.py
是项目的启动文件,负责初始化配置、加载数据、训练模型和评估模型。以下是 main.py
的主要功能模块:
import config.default_config as config
from utils.data_loader import load_data
from models.custom_model import CustomModel
def main():
# 加载配置
cfg = config.load_config()
# 加载数据
train_data, val_data = load_data(cfg)
# 初始化模型
model = CustomModel(cfg)
# 训练模型
model.train(train_data, val_data)
# 评估模型
model.evaluate(val_data)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
配置文件位于 config/
目录下,主要包括 default_config.yaml
和 custom_config.yaml
。
default_config.yaml
data:
path: "data/processed/"
batch_size: 32
num_workers: 4
model:
input_channels: 3
num_classes: 21
learning_rate: 0.001
epochs: 50
train:
checkpoint_path: "checkpoints/"
log_interval: 10
custom_config.yaml
data:
path: "data/custom_processed/"
batch_size: 16
num_workers: 2
model:
input_channels: 4
num_classes: 10
learning_rate: 0.0005
epochs: 100
train:
checkpoint_path: "custom_checkpoints/"
log_interval: 20
配置文件主要包含数据路径、模型参数、训练参数等配置项,用户可以根据需要修改 custom_config.yaml
以适应不同的数据集和训练需求。